Технический каталог

Emax

Низковольтные автоматические выключатели на номинальный ток 800 - 6300А

1SDC200006D0202

выключателей SACE Emax

Установка

Расцепители защиты и аксессуары к ним

Ансессуары

Применение автоматических выключателей

Электрические схемы.

Коды заказа

1

2

3

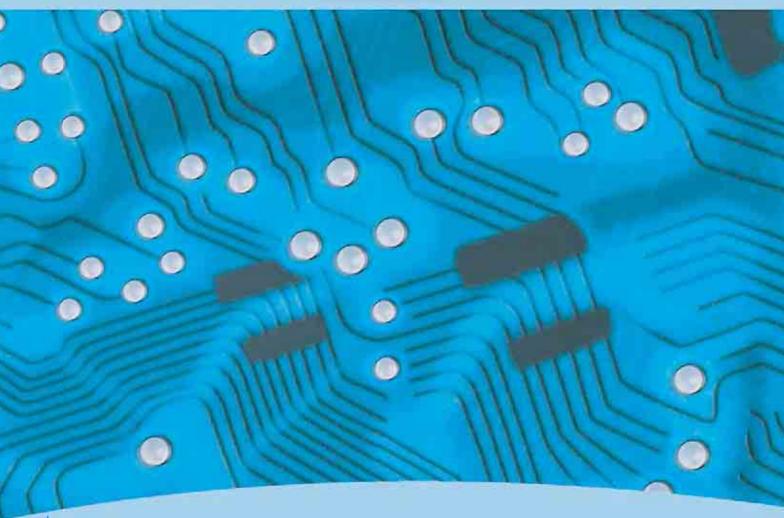
6

8

9

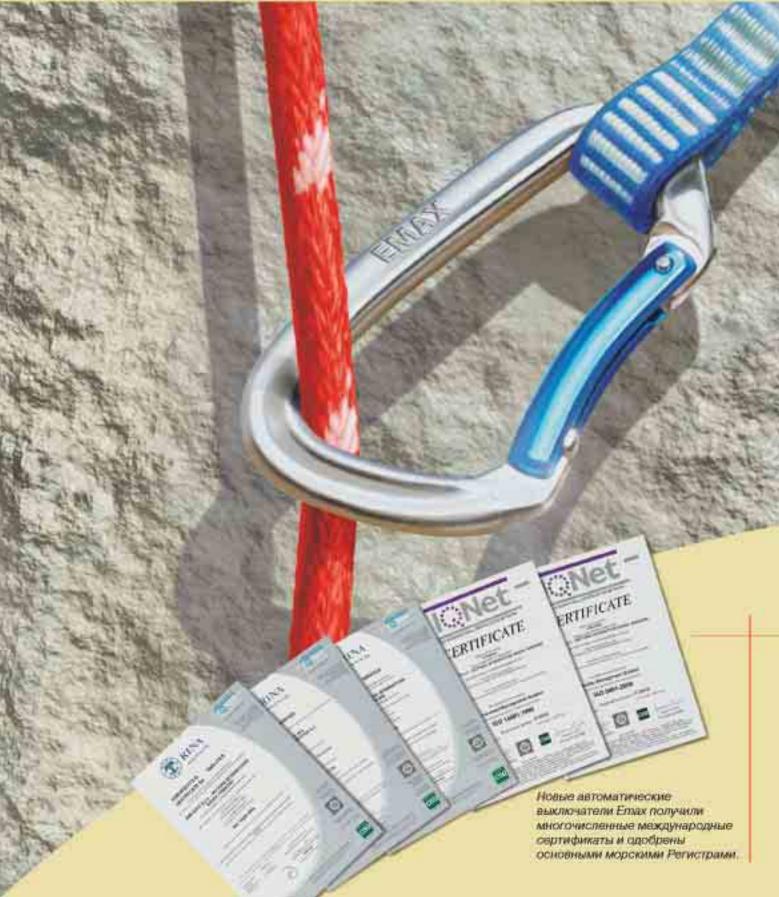
которых отвечает всем эксплуатационным требованиям. Инновации в новой продукции Етах действительно уникальны со всех точек зрения: полностью модернизированные расцепители, оснащенные электроникой последнего поколения, с улучшенными техническими характеристиками при сохранении прежних размеров, и новыми возможностями применения для удовлетворения современных потребностей рынка. Новые электронные устройства открывают окно в мир выдающихся решений с возможностями подключения, ранее не предлагавшимися на рынке. Откройте огромные возможности продукции Етах от АВВ SACE. Эволюция продолжается с 1942 года.

Новый Emax. Новый уровень исполнения.



Продолжая традиции ABB SACE, новая серия автоматических выключателей Етах предлагает самый высокий уровень исполнения в своей категории. Ряд автоматических выключателей Етах предлагает Вам огромные преимущества: благодаря улучшенным эксплуатационным характеристикам Вы можете использовать выключатели меньших габаритов, значительно экономя средства и пространство внутри распределительного щита. Теперь диапазон номинальных токов для Етах Е1 увеличен до 1600A, в то время как новая версия V автоматического выключателя Етах Е3 предлагает наивысший уровень исполнения. Постоянно следя за быстро меняющимися требованиями рынка, ABB SACE создала ряд специальных продуктов для новых электроустановок и модернизации старых.

Новый Emax. Новое поколение расцепителей.



Новая серия автоматических выключателей Етах оснащена новым поколением расцепителей защиты, созданных на основе последних достижений электроники и предлагающих индивидуальные решения для управления и защиты. Новые расцепители, являясь удивительно гибкими и простыми в


эксплуатации, содержат важные новшества, такие как совершенно новый, более понятный интерфейс оператора, обеспечивающий полное управление системой всего несколькими нажатиями клавиш. Более того, имеются новые функции защиты, новые аварийные сигнальные устройства и возможность подключения к портативным и переносным компьютерам посредством технологии Bluetooth. Модернизированная архитектура аппаратного обеспечения делает конфигурацию гибкой и точной.

При использовании новых автоматических выключателей Етах больше нет необходимости в полной замене расцепителя - просто добавьте модуль удовлетворяющий Вашим требованиям: это большое преимущество, как в гибкости эксплуатации, так и в адаптации к требованиям заказчика.

Новый уровань надажности. Новый уровань надажности.

Тщательный подбор материалов, основательно выполненная сборка и этап жестких испытаний обеспечивают исключительную надежность и прочность новых продуктов Emax, которые позволяют выдерживать высокие

динамические и температурные нагрузки дольше, чем любые другие автоматические выключатели данной категории. С новой унифицированной системой аксессуаров, разработанных и созданных для новых автоматических выключателей Етах, работа становится более простой, удобной, безопасной и быстрой. Новые Етах создают то приятное ощущение уверенности, которое может обеспечить только надежный продукт.

Основные характеристики

Общий обзор продукции SACE Emax
Области применения
Конструктивные особенности
Конструкция автоматических выключателей 1/4
Механизм управления
Органы управления и сигнализации
Неподвижные части выкатных выключателей1/7
Категория применения1/8
Конструктивное исполнение и выводы
Микропроцессорные расцепители
Общие характеристики1/10
Типы и исполнения
Модули номинального тока
Соответствие стандартам
Стандарты, разрешения и сертификаты
Система контроля качества и соблюдение
требований по охране окружающей среды 1/15

Общий обзор семейства продуктов SACE Emax Области применения

E1

Автоматические выключат	ели	E1B	E1N	E2B	E2N	E2S	E2L	
Полюсы	[Кол-во]	3 -	- 4		3	- 4		
Уровень защиты нейтрали в 4-полюсном	и выключателе [% lu]	10	00		1	00		
Номинальный (40 °C)	[A]	800-1000-	800-1000-	1600-2000	1000-1250-	800-1000-	1250-1600	
ток выключателя lu		1250-1600	1250-1600		1600-2000	1250-1600-		
						2000		
Номинальное рабочее нап	ряжение Ue [B~]	690	690	690	690	690	690	
Номинальная предельная отключающая способность [си	(220415B) [kA]	42	50	42	65	85	130	
Номинальная рабочая отклю- чающая способность lcs	(220415B) [kA]	42	50	42	65	85	130	
Номинальный кратковрем	енно (1сек.) [kA]	42	50	42	55	65	10	
выдерживаемый ток Icw	(3cek.) [kA]	36	36	42	42	42	_	

E2

Автоматические выключат	ели с полноразмерно	ой нейтралью	
Полюсы	[Кол-во.]	Стандартное исполнение	Стандартное исполнение
Уровень защиты нейтрали в 4-полюсном	выключателе [% lu]		
Номинальный ток выключателя	ılu (40 °C) [A]		
Номинальное рабочее напр	ояжение Ue [B~]		
	(220415B) [kA]		
Номинальная рабочая отклю- чающая способность Ics	(220415B) [kA]		
Номинальный кратковреме	енно (1сек.)[kA]		
выдерживаемый ток Icw	(Зсек.) [kA]		

Выключатели-разъединители		E1B/MS	E1N/MS	E2B/MS	E2N/MS	E2S/MS	
Полюсы	[Кол-во.]	3 - 4	3 - 4	3 - 4	3 - 4	3 - 4	
Номинальный ток выключателя $(40\ ^{\circ}\text{C})$	яlu [A]	800-1000- 1250-1600	800-1000- 1250-1600	1600-2000	1000-1250- 1600-2000	1000-1250- 1600-2000	
Номинальное рабочее напряже	ние Ue [B~]	690	690	690	690	690	
Номинальный кратковременно	(1сек.) [kA]	42	50	42	55	65	
выдерживаемый ток Icw	(Зсек.) [kA]	36	36	42	42	42	
Номинальная наибольшая включающая способность Icm (22)	0440B) [kA]	88.2	105	88.2	121	143	

Автоматические выключател	и на 1150 В переменного тока	E2B/E	E2N/E	
Полюсы	[Кол-во.]	3 - 4	3 - 4	
Номинальный ток выключат (40 °C)	еля lu [A]	1600-2000	1250-1600- 2000	
Номинальное рабочее напря	жение Ue [B∼]	1150	1150	
Номинальная предельная отключающая способность Іси	(1150B) [kA]	20	30	
Номинальная рабочая отклю- чающая способность lcs	(1150B) [kA]	20	30	
Номинальный кратковременно	(1сек.) [kA]	20	30	

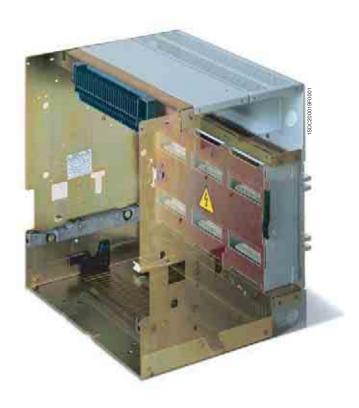
Выключатели-разъединител	и на 1150 В переменного тока	E2B/E MS	E2N/E MS	
Полюсы	[Кол-во.]	3 - 4	3 - 4	
Номинальный ток	(40 °C) [A]	1600-2000	1250-1600-	
выключателя Іи			2000	
Номинальное рабочее нап	ряжение Ue [B~]	1150	1150	
Номинальный кратковременно выдерживаемый ток Icw	(1сек.)[kA]	20	30	
Номинальная наибольшая включающая способность Icm	(1000B)[kA]	40	63	

Выключатели-разъединители на 1000 В постоянного тока		E1B/E MS	E2N/E MS			
Полюсы	[Кол-во.]	3 - 4	3 - 4			
Номинальный ток выключателя lu	(40 °C) [A]	800-1250	1250-1600-2000			
	1000 В постоянного тока ЕТБЕ МЗ посы [Кол-во.] 3 - 4 3 - 4 минальный ток инфартков рабочее напряжение Ue [В-] 40°C) [A] 800-1250 1250-1600-2000 минальный кратков ременно церживаемый ток (серживаемый ток серживаемый ток (серживаемый ток серживаемый ток (серживаемый ток серживаемый ток сержива					
Номинальный кратковременно выдерживаемый ток Icw	(1сек.)[kA]	20	25			
Номинальная наибольшая	(750B) [kA]	42	52.5			
включающая способность Icm	(1000B)[kA]	42	52.5			

Секционный выкатной разъединитель	E1 CS	E2 CS	
Номинальный ток выключателя lu (40 °C) [A]	1250	2000	
Заземляющий разъединитель с включающей способностью	E1 MTP	E2 MTP	
Номинальный ток выключателя Iu (40 °C) [A]	1250	2000	
Заземляющий выкатной разъединитель	E1 MT	E2 MT	
Номинальный ток выключателя Iu (40 °C) [A]	1250	2000	

(*) 50 кА при напряжении 1000 В.

									_
		E 3				E4		Е	6
E3N	E3S	ЕЗН	E3V	E3L	E4S	E4H	E4V	E6H	E6V
		3 - 4				3 - 4 50		3 -	
		800-1000-1250-	800-1250-			30			
2500-3200	1600-2000- 2500-3200	1600-2000- 2500-3200	1600-2000- 2500-3200	2000-2500	4000	3200-4000	3200-4000	4000- 5000-6300	3200-4000- 5000-6300
690	690	690	690	690	690	690	690	690	690
65	75	100	130	130	75	100	150	100	150
65 65	75 75	85 75	100 85	130 15	75 75	100	150 100	100	125 100
65	65	65	65	_	75	75	75	85	85
					E4S/f	E4H/f		E6H/f	
		Стандартное исг	полнение		4	4		4	
					100 4000	100 3200-4000		100 4000-5000-6300	
					690	690		690	
					80	100		100	
					80	100		100	
					80	85		100	
					75	75		100	
E3N/MS	E3S/MS		E3V/MS		E4S/MS	E4H/MS	E4H/f MS	E6H/MS	E6H/f MS
3 - 4	3 - 4		3-4		3 - 4	3 - 4	4	3-4	4
	1000-1250-1600-		800-1250-1600-					4000-5000-	4000-5000-
2500-3200	2000-2500-3200		2000-2500-3200		4000	3200-4000	3200-4000	6300	6300
690 65	690 75		690 85		690 75	690 100	690 85	690 100	690 100
65	65		65		75	75	 75	85	85
143	165		286		165	220	220	220	220
		E3H/E				E4H/E		E6H/E	
		3 - 4				3 - 4		3 - 4	
		1250-1600-2000-				2000 4000		4000-5000	
		2500-3200 1150				3200-4000 1150		6300 1150	
		30 (*)				65		65	
		30 (*)				65		65	
		30 (*)				65		65	
		E3H/E MS				E4H/E MS		E6H/E MS	
		3 - 4 1250-1600-2000-				3 - 4		3 - 4 4000-5000	
		2500-3200				3200-4000		6300	
		1150				1150		1150	
		50				65		65	
		105				143		143	
		E3H/E MS				E4H/E MS		E6H/E MS	
		3 - 4				3 - 4		3 - 4	_
	1250-	1600-2000-2500-3	3200			3200-4000		4000-5000-6300	
		люса)-1000 (4 п			750 (3 пол		полюса) 750) (3 полюса)-1000	(4 полюса)
		40				65		65	
		105				143		143	
		105				143		143	
		E3 CS				E4 CS		E6	cs
		3200				4000		630	
		E3 MTP				E4 MTP		E6 N	
		3200				4000		630	00
		EQ BAT				E4 NAT		For	MT
		E3 MT 3200				E4 MT 4000		E6 630	
		3200				4000		15.0	

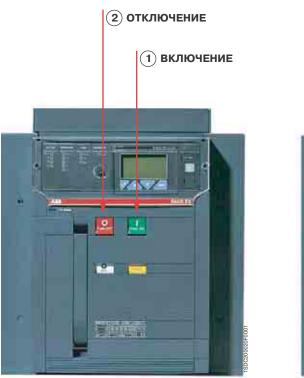

Конструкция автоматических выключателей

Воздушные автоматические выключатели с корпусом из листовой стали чрезвычайно компактны, со значительно уменьшенными габаритными размерами. Благодаря двойной изоляции токоведущих частей и полному разделению между фазами достигается повышенная безопасность.

Все автоматические выключатели имеют одинаковые высоту и глубину для каждой версии.

Глубина выключателя выкатного исполнения позволяет устанавливать его в распределительные щиты глубиной 500 мм. Ширина выключателя выкатного исполнения 324 мм (с номинальным током до 2000 A) позволяет использовать распределительные щиты шириной 400 мм. Малые габаритные размеры позволяют применять выключатель для замены воздушных автоматических выключателей любых моделей более ранних серий.

1/4 ABB SACE


Механизм управления

Применяется механизм управления с накопителем энергии, в котором используется энергия взведенных пружин.

Пружины взводятся вручную, при помощи расположенной на передней панели рукоятки, или же мотор-редуктором, поставляемым по запросу.

Отключающие пружины взводятся автоматически во время включения.

Выключателями можно управлять дистанционно, если они оснащены шунтовыми включающим и отключающим расцепителями и мотор-редуктором для взвода пружин. Такие выключатели могут работать в системе с централизованным управлением, если необходимо.

Без повторного взвода пружин возможны следующие последовательности операций:

- из исходного положения "отключен" (0) при взведенных пружинах:
 - включение-отключение
- из исходного положения "включен" (I) при взведенных пружинах:
 - отключение-включение-отключение.

Во всех выключателях серии используется один и тот же механизм управления, оснащенный механическим и электрическим устройством защиты от дребезга контактов.

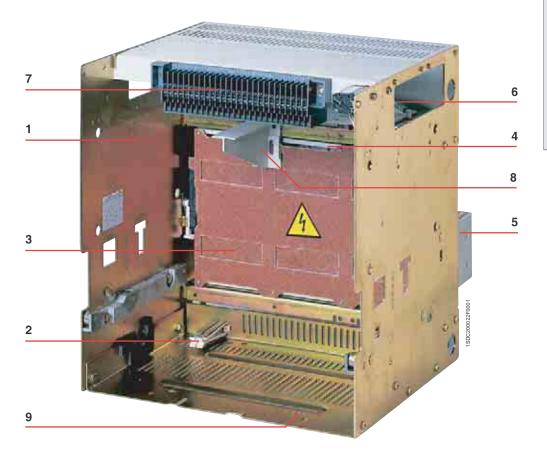
Органы управления и сигнализации

Выключатель стационарного исполнения

Выключатель выкатного исполнения

Обозначения

- 1 Торговая марка и типоразмер выключателя
- **2** Расцепитель SACE PR121, PR122 или PR123
- 3 Кнопка для ручного
- отключения выключателя
- 4 Кнопка для ручного включения выключателя
- 5 Рычаг для ручного взвода включающих пружин
- 6 Табличка с электрическими параметрами выключателя
- 7 Механический указатель разомкнутого "0" и замкнутого "1" положений выключателя
- 8 Указатель взведенного или невзведенного состояния пружин
- Механический индикатор срабатывания расцепителя
- 10 Замок в разомкнутом положении
- 11 Замок и блокировочное устройство с навесным замком в установленном-выкаченном положении (только для выключателя выкатного исполнения)
- **12** Устройство вкатывания- выкатывания (только для выключателя выкатного исполнения)
- 13 Клеммная коробка (только для выключателя стационарного исполнения)
- 14 Скользящие контакты (только для выключателя выкатного исполнения)
- 15 Указатель положения выключателя: установлен/ выкачен для тестирования/ выкачен (только для выключателя выкатного исполнения)


Примечание:

"Установлен" - это положение, при котором силовые контакты и вторичные цепи соединены; "выкачен" - это положение, при котором силовые контакты и вторичные цепи разъединены; "выкачен для тестирования" - это положение, при котором силовые контакты разъединены, тогда как вторичные цепи соединены.

Фиксированные части выкатных выключателей

Фиксированные части выкатных автоматических выключателей имеют шторки, которые отделяют контакты фиксированной части, если выключатель извлечен из корзины. Они могут быть зафиксированы в закрытом положении при помощи блокировочного устройства с навесным замком.

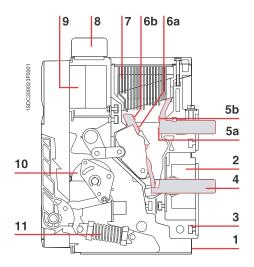
Обозначения

- **1** Каркас из листовой стали
- 2 Одиночный заземляющий зажим, установленный слева в выключателях E1, E2 и E3, сдвоенные заземляющие зажимы в выключателях E4 и E6.
- Защитные шторки (степень защиты IP20)
- 4 Держатель силовых выводов
- **5** Выводы (задние, передние или плоские)
- 6 Контакты сигнализации положения установлен, выкачен для тестирования; выкачен
- 7 Скользящие контакты
- 8 Блокировочное устройство с навесным замком для защитных шторок (по запросу)
- 9 Точки крепления (4 шт. для E1, E2, E3 и 6 шт. для E4, E6)

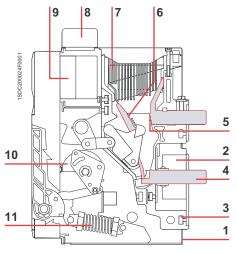
Категория применения

Селективные и токоограничивающие автоматические выключатели

Селективные (не токоограничивающие) **автоматические выключатели** относятся к категории В (в соответствии со Стандартом IEC 60947-2). Важно знать значение номинального кратковременно выдерживаемого тока Icw для создания временных задержек в случае короткого замыкания.


Токоограничивающие выключатели E2L и E3L относятся к категории А. Значение номинального кратковременно выдерживаемого тока Icw для этих выключателей не является определяющим. Как правило, это значение низкое, что объясняется принципом их работы. Принадлежность к классу А не означает, что невозможно обеспечить необходимую селективность (например, селективность по току или по времени).

Специальные особенности токоограничивающих выключателей также достойны внимания. Фактически, они обеспечивают:


- существенное снижение пикового значения тока по отношению к расчетному значению;
- значительное ограничение удельной рассеиваемой энергии.

И как результат:

- снижение электродинамических ударов;
- снижение тепловых перегрузок;
- снижение сечения кабелей и шин;
- возможность согласования с другими выключателями, включенными последовательно в одной цепи для обеспечения резервной защиты или селективного отключения.

Селективный автоматический выключатель E1 B-N, E2 B-N-H, E3 N-S-H-V, E4 S-H-V, E6 H-V

Токоограничивающий автоматический выключатель E2 L, E3 L

1	Каркас из листовой
	стали
2	Трансформатор тока
	для расцепителя
3	Изолирующая оболочка
	полюсной группы
4	Горизонтальные выводы
	для подключения сзади
5-5a	Контактные пластины непо-
	движных главных контактов
5b	Контактные пластины непо-
	движных дугогасящих контактов
6-6a	Контактные пластины по-
	движных главных контактов
6b	Контактные пластины подвиж-
	ных дугогасящих контактов
7	Дугогасительная камера
8	Клеммная коробка для вы-
	ключателя стационарного
	исполнения - Скользящие
	контакты для выключателя
	выкатного исполнения
9	Расцепитель
10	Механизм управления вклю-
	чением и отключением авто-
	матического выключателя
11	Включающие пружины

Обозначения

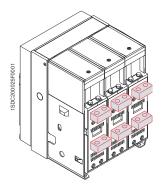
1/8 ABB SACE

Конструктивное исполнение и выводы

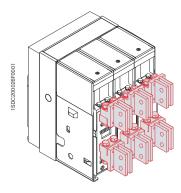
Все выключатели серии выпускаются в стационарном и выкатном исполнении с тремя и четырьмя полюсами.

Каждая модель выключателя имеет выводы из посеребренных медных шин одного сечения, независимо от номинального тока выключателя.

Фиксированные части каждой модели выключателей выкатного исполнения одинаковы, независимо от номинального тока и отключающей способности соответствующих съемных частей.


Для специальных применений выпускаются выключатели с позолоченными выводами, предназначенные для эксплуатации в условиях агрессивной окружающей среды.

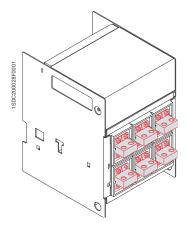
Различные типы силовых выводов позволяют комплектовать распределительные щиты, одностороннего или двухстороннего обслуживания с выводами для подключения сзади.


Выключатели могут комплектоваться различными комбинациями верхних и нижних выводов для специальной установки.

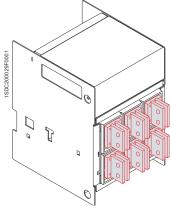
Более того, новые комплекты преобразования силовых выводов делают автоматические выключатели серии Emax максимально гибкими, позволяя изменить горизонтальные выводы в вертикальные или передние и наоборот.

Выключатель стационарного исполнения

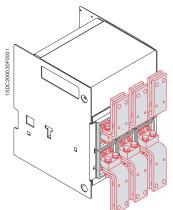
Горизонтальные выводы для подключения сзади

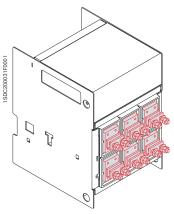


Вертикальные выводы для подключения сзади



Выводы для подключения спереди


Выключатель выкатного исполнения


Горизонтальные выводы для подключения сзади

Вертикальные выводы для подключения сзади

Выводы для подключения спереди

Плоские выводы

Общие характеристики

В защите от сверхтоков для установок переменного тока используются три типа микропроцессорных расцепителей: PR121, PR122 и PR123.

Основной тип, PR121, предлагает полный набор стандартных функций защиты в комплекте с удобным для пользователя интерфейсом.

Он позволяет распознавать неисправность, вызвавшую аварийное отключение, посредством новой индикации на светодиодах.

В расцепителях PR122 и PR123 используется новая концепция модульной архитектуры. Теперь возможно получение полного комплекта функций защиты, точных измерений, сигнализации или диалоговых функций, специально разработанных и адаптированных ко всем основным эксплуатационным требованиям.

Система аварийной защиты состоит из:

- 3 или 4 датчиков тока нового поколения (контур Роговского);
- датчиков тока во внешней цепи (т.е. для внешней нейтрали, для защиты от разностного тока или тока утечки через землю источника);
- блока защиты: PR121/P, PR122/P или PR123/P с поставляемым по запросу модулем обмена данными через сетевой протокол Modbus или Fieldbus-plug (только для моделей PR122/P и PR123/P), а также посредством беспроводного соединения;
- отключающего электромагнита, который воздействует непосредственно на механизм управления автоматического выключателя (поставляется вместе с блоком защиты).

1/10 ABB SACE

Типы и исполнения

Основные технические характеристики электронных расцепителей:

- не требуется внешний источник питания
- микропроцессорная технология
- высокая точность
- чувствительность к действующему значению тока
- индикация причины аварийного выключения и регистрация данных аварийного отключения
- взаимозаменяемость всех типов расцепителей
- уставка для нейтрали:
 - OFF-50%-100%-200% от уставки фаз для выключателей E1, E2, E3 и полноразмерных исполнений E4/f, E6/f, а также E4-E6 с защитой внешней нейтрали;
 - OFF-50% для стандартных моделей E4 и E6.

Ниже приведены основные типы и исполнения расцепителей.

Типы и исполнения.

ункции защиты	PR121	PR122	PR123
Защита от перегрузки с обратнозависимой долговременной выдержкой времени	•	•	•
S Селективная защита от короткого замыкания с обратнозависимой или заданной кратковременной выдержкой времени	•	•	-
S Вторая селективная защита от короткого замыкания с обратнозависимой или кратковременной выдержкой времени	заданной		•
Мгновенная защита от короткого замыкания с регулируемым пороговым значением тока срабатывания	•	•	•
3 Защита от замыкания на землю защита от остаточных то через заземление источности.		-	
Rc Защита от дифференциального тока	IVIKU	по запросу	по запросу
 Защита от короткого замыкания в зависимости от направления с регулируемой вы 	держкой времени	l	
U Защита от перекоса фаз		•	
от Защита от перегрева (проверка)		•	-
w Защита от недостаточного напряжения		по запросу(1)	
ov Защита от избыточного напряжения		по запросу ⁽¹⁾	-
RV Защита от разностного напряжения		по запросу (1)	
🔐 Защита от обратного потока мощности		по запросу (1)	
П Тепловая память для функций L и S		Jan. pooy	
От Защита от пониженной частоты		по запросу (1)	
ог Защита от повышенной частоты		. , ,	
от оддина от новышенном частоты		по запросу ⁽¹⁾	
змерения			
оки (фаз, нейтрали, замыкания на землю)		•	•
апряжение (фаза-фаза, фаза-нейтраль, разностное)		по запросу (1)	-
оэффициент мощности (cos)		по запросу (1)	
оэффициент мощности (cos) астота и пик-фактор		по запросу ⁽¹⁾	
нергия (активная, реактивная, полная, счетчик)		по запросу	
асчет гармоник (отображение формы волны и величины гармоник)			
егистрация событий и хранение данных			
егистрация типа и времени событий	по запросу (2)		
ранение событий в хронологическом порядке	по запросу	-	
одсчет количества операций и износа контактов	canpeey	•	
вязь с центральной системой диспетчеризации и управления			
истанционное задание уставок функций защиты, параметров расцепителя и блока обме	на ланными	по запросу ⁽³⁾	по запросу ⁽³⁾
ередача измерений, сигналов состояния и аварии от выключателя в систему уп		по запросу	по запросу (3)
ередача событий и эксплуатационных данных от выключателя в систему управления		по запросу ⁽³⁾	по запросу ⁽³⁾
амотестирование			
игнализация и отключение при превышении рабочей температуры расцепителя			
роверка состояния расцепителя	•		
нтерфейс и пользователь становка параметров DIP-переключателями			
становка параметров от - переключателями становка параметров при помощи клавиатуры и жидкокристаллического дисплея	-		
варийная сигнализация для функций L, S, I и G		-	
варийная сигнализация одного из следующих видов защиты: недостаточное напряж ревышение напряжения, разностное напряжение, обратный поток мощности, ерекос фаз, перегрев	ение,	по запросу ⁽¹⁾	
олное управление подачей предупредительных и аварийных сигналов для всех функций	защиты и самоко		
ежимы работы: только чтение (READ) или чтение и установка (EDIT) параметров при введении пароля)		•	•
правление нагрузкой			
правление нагрузкои оммутирование нагрузки в зависимости от протекающего через выключатель тока			
		-	

⁽¹⁾ с блоком PR120/V; (2) с устройством для передачи данных BT030; (3) с блоком PR120/D-M

Модули номинального тока

Новый способ установки номинального тока

Модули	номинально	ого	тока										
Гип зыключателя			630	800	1000	1250	1600	2000	2500	3200	4000	5000	6300
	800												
E1B	1000-1250												
	1600												
	800												
E1N	1000-1250												
	1600												
BIN 1000-1250 1000 1250 1600 1250 1600 1250 1600 1250 1600 1250 1600 1250 1600 1250 1600 1250 1600 1250 1600 1250 1600 125													
	2000												
	1000-1250												
E2N	1600												
	2000												
E2S													
F2I	1250												
	1600												
F3N	2500												
2014	3200												
	1000-1250												
E3S	1600												
	2000												
	2500												
	3200												
	800												
	1000-1250												
	1600												
E3H	2000												
	2500												
	3200												
	800												
	1250												
E3V	1600												
LUV	2000												
E3L													
E4S, E4S/f													
E4H. E4H/f	3200												
,													
F4V													
E6H, E6H/f													
	6300												
	3200												
E6V	4000												
	5000												
	6300												

Соответствие стандартам

Стандарты, разрешения и сертификаты

Автоматические выключатели SACE Emax и их аксессуары соответствуют Международным Стандартам IEC 60947, EN 60947 (утвержден в 28 странах CENELEC), СЕІ EN 60947 и IEC 61000, а также соответствуют следующим директивам ЕС:

- "Директива в области низкого напряжения" (LVD) № 73/23
- "Директива по электромагнитной совместимости" (EMC) № 89/336 EEC.

Основные модели аппаратов одобрены следующими морскими Регистрами:

- RINA (Морской Регистр Италии)
- Det Norske Veritas
- Bureau Veritas
- Germanischer Lloyd
- Lloyd's Register of Shipping
- Polski Rejestr Statkow
- ABS (Американское бюро судоходства)
- RMRS (Морской Регистр судоходства РФ)
- NK (Nippon Kaiji Kyokai)

Среди моделей Етах также имеется ряд изделий, прошедших сертификацию в соответствии с жесткими стандартами США UL 1066. Кроме того, серия Emax сертифицирована ГОСТ Р (Российский сертификат соответствия), а также сертифицирована Китайским ССС (Обязательный сертификат Китая).

Сертификация соответствия вышеуказанным стандартам проводится в соответствии с Европейским стандартом EN 45011, итальянской сертификационной организацией ACAE (Associazione per la Certificazione delle Apparecchiature Elettriche - Ассоциация по Сертификации Электрических Устройств), признанной Европейским сертификационным органом LOVAG (Группа по соглашениям в области низкого напряжения).

Соответствие стандартам

Система контроля качества и соблюдение требований по охране окружающей среды

Обеспечение качества, охраны окружающей среды, здоровья и безопасности всегда было в числе основных приоритетов компании ABB SACE. Эти обязательства распространяются на каждое подразделение компании, что и позволило нам получить авторитетное признание на международном уровне.

Система контроля качества компании сертифицирована RINA, одним из наиболее престижных международных сертификационных органов, и соответствует Стандартам ISO 9001-2000; испытательное оборудование ABB SACE аккредитовано SINAL; заводы в городах Фрозиноне, Патрика, Виттуоне и Гарбаньяте Монастеро также прошли сертификацию на соответствие Стандартам ISO 14001 и OHSAS 18001 по охране труда и технике безопасности на рабочем месте.

АВВ SACE, первой в Италии промышленной компании в области производства электромеханического оборудования, достигшей таких результатов, удалось снизить расход сырья и отходы обработки на 20% благодаря ориентированной на охрану окружающей среды модернизации производственного процесса. Все подразделения компании задействованы в процессе рационализации расхода сырья и энергоресурсов, предотвращения загрязнения, ограничения шумового загрязнения окружающей среды и уменьшения объема отходов, полученных в результате производственного процесса, а также в проведении периодического экологического аудита ведущих поставщиков.

ABB SACE осуществляет защиту окружающей среды, что также подтверждается Оценкой жизненного цикла (LCA) продукции, проводимой в научно-исследовательском центре:

это означает, что оценка и усовершенствование экологических характеристик продукции на протяжении всего срока службы начинаются непосредственно с первоначальной стадии проектирования. Используемые материалы, технологическая обработка и упаковка выбираются с целью оптимизации фактического воздействия каждого продукта на окружающую среду, включая эффективность энергопотребления и пригодность к переработке для вторичного использования.

Различные исполнения выключателей SACE Emax

Содержание

Автоматические выключатели SACE Emax2/2
Автоматические выключатели с полноразмерной нейтралью
Выключатели-разъединители
Автоматические выключатели на напряжение 1150 В переменного тока
Выключатели-разъединители на напряжение 1150 В переменного тока2/7
Выключатели-разъединители на напряжение 1000 В постоянного тока
Выкатной разъединитель
Заземляющий выключатель с включающей способностью
В ыкатной заземлитель
Другие исполнения

Автоматические выключатели SACE Emax

		E	1		E	2	
Уровень исполнения		В	N	В	N	S	L
Токи							
Номинальный ток выключателя (при 40°C)	lu [A]	800	800	1600	1250	800	1250
	[A]	1250	1250	2000	1600	1250	1600
	[A]	1600	1600		2000	1600	
	[A]					2000	
	[A]						
	[A]						
Уровень защиты нейтрали в 4-полюсном выключател	пе [%lu]	100	100	100	100	100	100
Номинальная предельная отключающая способность при коротком замыкании Icu							
220/230/380/400/415 B ~	[kA]	42	50	42	65	85	130
440 B ~	[kA]	42	50	42	65	85	110
500/525 B ~	[kA]	36	36	42	55	65	85
660/690 B ~	[kA]	36	36	42	55	65	85
Номинальная рабочая отключающая способность при коротком замыкании Ics							
220/230/380/400/415 B ~	[kA]	42	50	42	65	85	130
440 B ~	[kA]	42	50	42	65	85	110
500/525 B ~	[kA]	36	36	42	55	65	65
660/690 B ~	[kA]	36	36	42	55	65	65
Номинальный кратковременно выдерживаемый ток lcw (1	1сек) [kA]	42	50	42	55	65	10
(?	3сек) [kA]	36	36	42	42	42	_
Номинальная наибольшая включающая способность на короткое замыкание (пиковое значение) Іст							
220/230/380/400/415 B ~	[kA]	88.2	105	88.2	143	187	286
440 B ~	[kA]	88.2	105	88.2	143	187	242
500/525 B ~	[kA]	75.6	75.6	84	121	143	187
660/690 B ~	[kA]	75.6	75.6	84	121	143	187
Категория применения (Согласно CEI EN 60947	-2)	В	В	В	В	В	Α
Пригодность к разъединению (Согласно CEI EN	V 60947-2)		-				
Защита от сверхтоков							
Микропроцессорные расцепители для применения на	а переменно	м токе					
Время срабатывания							
Время замыкания (макс.)	[MC]	80	80	80	80	80	80
Время размыкания для I <icw (макс.)<sup="">(1)</icw>	[MC]	70	70	70	70	70	70
Время размыкания для I>lcw (макс.)	[MC]	30	30	30	30	30	12
абаритные размеры							
Стационарный: В = 418 мм Г = 302 мм Ш (3/4 полюсн	ный) [мм]	296	3/386		296	5/386	
Выкатной: В = 461 мм Г = 396,5 мм Ш (3/4 полюсь	 ный) [мм]	324	/414		324	1/414	
	оматорами	тока, включа	я аксесс	суары)			
Масса (выключатель с расцепителями и трансформатель)							
Масса (выключатель с расцепителями и трансфор Стационарный 3/4 полюсный	[кг]	45/54	45/54	50/61	50/61	50/61	52/63

⁽¹⁾ без преднамеренной задержки; (2) 100 кА при напряжении 600 В

		E	1 B-	N		E2 B	-N-S		E2 L		
Номинальный ток выключателя (пр	ои 40°C) lu [A]	800	1250	1600	800	1250	1600	2000	1250	1600	
Механическая износостойкость при регулярном обслуживании	[Кол-во циклов х 1000]	25	25	25	25	25	25	25	20	20	
Частота включений	[Циклов в час]	60	60	60	60	60	60	60	60	60	
Электрическая износостойкость	(440 B ~)[Кол-во циклов x 1000]	10	10	10	15	15	12	10	4	3	
	(690 В ~)[Кол-во циклов х 1000]	10	8	8	15	15	10	8	3	2	
Частота включений	[Циклов в час]	30	30	30	30	30	30	30	20	20	

2/2 ABB SACE

		E3				E4				E 6		
N	S	Н	V	L	S	Н	V		Н	١	V	
2500	1000	800	800	2000	4000	3200	3200		4000	32	200	
3200	1250	1000	1250	2500		4000	4000		5000	40	000	
	1600	1250	1600						6300	50	00	
	2000	1600	2000							63	00	
	2500	2000	2500									
	3200	2500	3200									
		3200										
100	100	100	100	100	50	50	50		50	5	50	
65	75	100	130	130	75	100	150		100	18	50	
65	75	100	130	110	75	100	150		100	15	50	
65	75	100	100	85	75	100	130		100	10	30	
65	75	100	100	85	75	85 (2)	100		100	10	00	
65	75	85	100	130	75	100	150		100		25	
65	75	85	100	110	75	100	150		100		25	
65	75	85	85	65	75	100	130		100		00	
65	75	85	85	65	75	85	100		100		00	
65	75	75	85	15	75	100	100		100	10	00	
-	65	65	65	65	-	75	75		75	85	85	
143	165	220	286	286	165	220	330		220		30	
143	165	220	286	242	165	220	330		220		30	
143	165	187	220	187	165	220	286		220		86	
143	165	187	220	187	165	187	220		220		20	
 В	В	В	В	Α	В	В	В		В		3	
-	•	•		•	•		-		•			
										_	_	
 -	-	-	-	-	•	•	•		•			
80	80	80	80	80	80	80	80		80	8	80	
70	70	70	70	70	70	70	70		70		0	
30	30	30	30	12	30	30	30		30		80	
				12								
		404/530				566/656				782/908		
		432/558				594/684				810/936		
		.02,000				00 1100 1				0.0,000		
66/80	66/80	66/80	66/80	72/83	97/117	97/117	97/117		140/160) 140	/160	
104/125		104/125	104/125	110/127	147/190	147/190	147/190		210/260		/260	
		N-S-H			E3 L		E4 S-	H-V		E6 H	-V	
800 10	000-1250	1600 200	0 2500	3200	2000 25	00	3200	4000	3200	4000	5000	6300
 20	20	20 20	20	20	15 1	5	15	15	12	12	12	12
60	60	60 60	60	60	60 6	0	60	60	60	60	60	60
12		10 9		6	2 1		7	5	5	4	3	2
12		10 9		5	1.5 1		7	4	5	4	2	1.5
14	16	3	,	J	1.0		,	-	J	-	_	1.0

E3 N-S-H-V						E	E3 L E4 S-H-V							E6 H-V		
800	1000-1250	1600	2000	2500	3200	2000	2500		3200	4000		3200	4000	5000	6300	
20	20	20	20	20	20	15	15		15	15		12	12	12	12	
60	60	60	60	60	60	60	60		60	60		60	60	60	60	
12	12	10	9	8	6	2	1.8		7	5		5	4	3	2	
12	12	10	9	7	5	1.5	1.3		7	4		5	4	2	1.5	
20	20	20	20	20	20	20	20		10	10		10	10	10	10	

2/3 ABB SACE

Автоматические выключатели с полноразмерной нейтралью

Исполнение автоматических выключателей Етах с полноразмерной нейтралью используется в особых случаях, когда присутствие третьей гармоники на отдельных фазах может привести к очень высокому току в нейтрали.

Среди обычных областей применения - установки с нагрузками, имеющими высокие гармонические искажения (компьютеры и электронные устройства в целом), системы освещения с большим количеством флуоресцентных ламп, системы с инверторами и выпрямителями, системы бесперебойного электроснабжения (UPS), а также системы для регулирования скорости электродвигателей.

Эта серия включает в себя стандартные автоматические выключатели с полноразмерной нейтралью, типоразмеры Е1, Е2, Е3. Имеется "полноразмерное" исполнение моделей Е4 и Е6 для значений номинального тока до 6300 А.

Выключатели Е4/f и Е6/f представлены в стационарном и выкатном четырехполюсном исполнении. Они могут быть укомплектованы всеми аксессуарами, выпускаемыми для серии Етах, за исключением Е6/f, с механической блокировкой, выполненной с использованием гибких проводов и 15 внешних вспомогательных контактов, которые, таким образом, несовместимы.

Все исполнения могут быть укомплектованы всеми существующими видами электронных расцепителей.

			E4S/f	E4H/f	E6H/f
Номинальный	и́ ток выключателя (при 40°C)	lu [A]	4000	3200	4000
		[A]		4000	5000
		[A]			6300
Количество по	олюсов		4	4	4
Номинальное	рабочее напряжение Ue	[B ~]	690	690	690
Номинальная г	редельная отключающая способность замыкании Icu				
	220/230/380/400/415 B ~	[kA]	80	100	100
	440 B ~	[kA]	80	100	100
	500/525 B ~	[kA]	75	100	100
	660/690 B ~	[kA]	75	100	100
Номинальная р	абочая отключающая способность при коротком				
	220/230/380/400/415 B ~	[kA]	80	100	100
	440 B ~	[kA]	80	100	100
	500/525 B ~	[kA]	75	100	100
	660/690 B ~	[kA]	75	100	100
Номинальный	кратковременно выдерживаемый ток Ісw				
	(1сек)	[kA]	75	85	100
	(Зсек)	[kA]	75	75	85
Номинальная н	аибольшая включающая способность на кание (пиковое значение) Іст				
	220/230/380/400/415 B ~	[kA]	176	220	220
	440 B ~	[kA]	176	220	220
	500/525 B ~	[kA]	165	220	220
	660/690 B ~	[kA]	165	220	220
Категория прі	именения (Согласно CEI EN 60947-2)		В	В	В
Пригодность	к разъединению (Согласно CEI EN 60947-2)				
Габаритные	размеры				
	Стационарный: В = 418 мм Г = 302 мм Ш	[MM]	746	746	1034
	Выкатной: В = 461 мм Г = 396,5 мм Ш	[MM]	774	774	1062
Масса (выклю	чатель с расцепителями и трансформатором тока	а, не включ	ная аксессуа	ры)	
	Стационарный	[кг]	125	125	185
	Выкатной	[кг]	200	200	275

ABB SACE 2/4

Выключатели-разъединители

ISDC200080F0001

Выключатели-разъединители получаются из соответствующих выключателей, от которых они сохранили габаритные размеры и возможность установки аксессуаров.

Это исполнение отличается от автоматических выключателей только отсутствием расцепителей защиты.

Выключатель выпускается в стационарном и выкатном, в трехполюсном и четырехполюсном исполнении. Выключатели-разъединители, обозначенные буквами "/МЅ", могут использоваться в соответствии с категорией применения АС-23А (переключение нагрузок электродвигателя либо других высокоиндуктивных нагрузок) в соответствии со Стандартом IEC 60947-3. Электрические характеристики выключателей-разъединителей представлены в таблице ниже.

			E1B/MS	E1N/MS	E2B/MS	E2N/MS	E2S/MS	E3N/MS	E3S/MS	E3V/MS	E4S/MS	E4H/f MS	E4H/MS	E6H/MS	E6H/f M
Номинальный		[A]	800	800	1600	1250	1250	2500	1250	800	4000	3200	3200	4000	4000
ток выключателя (при 40°C) lu		[A]	1250	1250	2000	1600	1600	3200	1600	1250		4000	4000	5000	5000
(при 40 C) Id		[A]	1600	1600		2000	2000		2000	1600				6300	6300
		[A]							2500	2000					
		[A]							3200	2500					
		[A]								3200					
Номинальное рабоч напряжение Ue	ee	[B ~]	690	690	690	690	690	690	690	690	690	690	690	690	690
		[B –]	250	250	250	250	250	250	250	250	250	250	250	250	250
Номинальное напря изоляции Ui	жение	[B ~]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Номинальное допус импульсное напряж		ɔ [kB]	12	12	12	12	12	12	12	12	12	12	12	12	12
Номинальный крати выдерживаемый	овременн (1сек)	o [kA]	42	50 ⁽¹⁾	42	55	65	65	75	85	75	85	100 ⁽²⁾	100	100
TOK ICW	(Зсек)	[kA]	36	36	42	42	42	65	65	65	75	75	75	85	85
Ном. включающая спо															
220/230/380/400/41	15/440 B ~	[kA]	88.2	105	88.2	143	187	143	165	286	165	220	220	220	220
500/660/690 B ~		[kA]	75.6	75.6	88.2	121	143	143	165	220	165	220	187	220	220

Примечание: отключающая способность Icu при максимальном рабочем напряжении, через внешнее релезащиты, с максимальным временем задержки 500 мс, равна значению Icw (1 сек).

(1) Icw (1 cek) = 36 kA @ 690 B

(2) Icw (1 cek) = 85 kA @ 690 B

Автоматические выключатели на напряжение 1150 В переменного тока

Выключатели SACE Emax могут поставляться в специальном исполнении, рассчитанном на номинальное рабочее напряжение 1150 В переменного тока. Автоматические выключатели этого исполнения имеют то же обозначение, что и базовая модель (на номинальное рабочее напряжение 690 В переменного тока) с добавлением символа "/Е". Они образованы от стандартных выключателей SACE Emax, и имеют те же версии и аксессуары. Выключатели SACE Emax с номинальным рабочим напряжением 1150 В переменного тока выпускаются в стационарном и выкатном исполнении с тремя и четырьмя полюсами. Автоматические выключатели SACE Emax/E специально предназначены для использования в распределительных щитах шахт, нефтехимических заводов и тяговых подстанций. Эта серия изделий Emax прошла испытания на напряжении 1250 В переменного тока.

В таблице ниже представлены электрические параметры этой серии.

		E2	B/E		E2N/E				E3H/E			E4	H/E	E6I	E6H/E	
Номинальный																
ток выключателя (при 40)°C) l u [A]	1600	2000	1250	1600	2000	1250	1600	2000	2500	3200	3200	4000	5000	6300	
Номинальное рабочее напряжение Ue	[B~]	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150	
Номинальное напряжение изоляции Ui	[B~]	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	
Номинальная предельная способность при коротко																
1000 E	3 [kA]	20	20	30	30	30	50	50	50	50	50	65	65	65	65	
1150 E	B [kA]	20	20	30	30	30	30	30	30	30	30	65	65	65	65	
Номинальная рабочая от способность при коротко		ıи Ics														
1000 E	3 [kA]	20	20	30	30	30	50	50	50	50	50	65	65	65	65	
1150 E	B [kA]	20	20	30	30	30	30	30	30	30	30	65	65	65	65	
Номинальный кратковрем выдерживаемый ток Icw (20	20	30	30	30	50*	50 [*]	50*	50 *	50 *	65	65	65	65	
Номинальная наибольшая способность на короткое			е значе	ние) Ісп	n											
1000 E	3 [kA]	40	40	63	63	63	105	105	105	105	105	143	143	143	143	
1150 E	3 [kA]	40	40	63	63	63	63	63	63	63	63	143	143	143	143	

^{* 30} KA @ 1150 B

2/6 ABB SACE

Выключатели-разъединители на напряжение 1150 В переменного тока

Эти выключатели-разъединители дополняют ряд устройств на напряжение 1150 В переменного тока. Данные выключатели соответствуют Стандартам IEC 60947-3. Выключатели этого исполнения имеют то же обозначение, что и базовая модель для номинального рабочего напряжения 690 В переменного тока, с добавлением символа "/Е", что вместе составляет SACE Emax/E MS. Они образованы от стандартных выключателей - разъединителей SACE Emax.

Выключатели выпускаются в стационарном и выкатном исполнении с тремя или четырьмя полюсами, с теми же размерам и аксессуарами, что и соответствующие базовые выключатели. Возможно применение всех аксессуаров, выпускаемых для серии SACE Emax. Стандартные неподвижные части также могут быть использованы для выключателей в выкатном исполнении. Данная серия также прошла испытания напряжением 1250В переменного тока.

		E2B/E MS	E2N/E MS	E3H/E MS	E4H/E MS	E6H/E MS
Номинальный ток выключателя (при 40°C) lu	[A]	1600	1250	1250	3200	5000
	[A]	2000	1600	1600	4000	6300
	[A]		2000	2000		
	[A]			2500		
	[A]			3200		
Полюсы		3/4	3/4	3/4	3/4	3/4
Номинальное рабочее напряжение Ue	[B]	1150	1150	1150	1150	1150
Номинальное напряжение изоляции Ui	[B]	1250	1250	1250	1250	1250
Номинальное импульсное напряжение Uimp	[kB]	12	12	12	12	12
Номинальный кратковременно выдерживаемый ток Ісw (1 сек)	[kA]	20	30	30(1)	65	65
Номинальная включающая способность Icm 1000 В переменного тока (пиковое значение)	[kA]	40	63	105	143	143

Примечание: отключающая способность Icu с внешним реле защиты, с максимальным временем срабатывания 500 мс, равна значению Icw (1 сек).

(1) 50 кА при напряжении 1000В.

Выключатели-разъединители на напряжение 1000 В постоянного тока

Компания ABB разработала серию выключателей разъединителей SACE Emax/E MS для применения на постоянном токе с напряжением 1000 В в соответствии с международным Стандартом IEC 60947-3. Эти выключатели специально предназначены для использования в качестве секционных или главных разъединителей в системах постоянного тока, таких как установки с электрической тягой. Данная серия охватывает все потребности установок на напряжение 1000 В постоянного тока/ 6300 А.

Они представлены в стационарном и выкатном исполнении с тремя или четырьмя полюсами.

Соединяя три полюса последовательно, можно достичь номинального рабочего напряжения 750 В постоянного тока, тогда как последовательное соединение четырех полюсов повышает предел напряжения 1000 В постоянного тока.

В выключателях-разъединителях SACE Emax/E MS сохраняются габаритные размеры и точки крепления как у базовых выключателей. Они могут быть оснащены различными силовыми выводами, а также всеми аксессуарами стандартного ряда SACE Emax. Разумеется, они не могут быть соединены с электронными расцепителями, трансформаторами тока и аксессуарами для переменного тока.

Выкатные выключатели должны использоваться вместе с неподвижными частями специального исполнения на напряжение 750/1000 В постоянного тока.

		[A]		E MS	E2N/	E MS	E3H/	E MS	E4H/	E MS	E6H/	E MS
Номинальный ток выключателя (при 40°C) lu				800		1250		50	3200		5000	
	[A]		1250		1600		1600		4000		63	00
		[A]			20	00	20	00				
		[A]					25	00				
		[A]					32	00				
Полюсы			3	4	3	4	3	4	3	4	3	4
Номинальное рабочее напряжение	Ue	[B]	750	1000	750	1000	750	1000	750	1000	750	1000
Номинальное напряжение изоляци	и U i	[B]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Номинальное импульсное напряжение Uimp		[kB]	12	12	12	12	12	12	12	12	12	12
Номинальный кратковременно выдер ток Icw (1 сек)	живаемый	[kA]	20	20(1)	25	25 ⁽¹⁾	40	40 (1)	65	65	65	65
Номинальная включающая способность Іст	750 В пост.	тока [kA]	42	42	52.5	52.5	105	105	143	143	143	143
	1000 В пос	г. тока	-	42	-	52.5	-	105	_	143	-	143

Примечание: отключающая способность Icu с внешним реле защиты, с максимальным временем срабатывания 500 мс, равна значению Icw (1 сек).

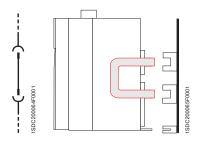
(1) При напряжении 750 В

для E1 B/E MS lcw = 25 kA

для E2 N/E MS Icw = 40 kA

для E3 H/E MS Icw = 50 kA

2/8 ABB SACE

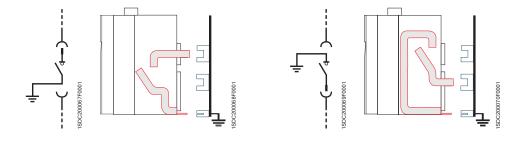


Выкатной разъединитель

Выкатной разъединитель - CS

Эта модификация получается из соответствующего базового выкатного автоматического выключателя путем извлечения всех частей контактной группы и механизма управления и установки обыкновенных перемычек между верхними и нижними полюсами.

Используется в качестве разъединителя без нагрузки, когда это предусмотрено в системе.


Заземляющий разъединитель с включающей способностью

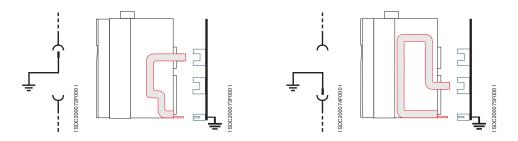
Заземляющий разъединитель с включающей способностью - МТР

Эта модификация получается из подвижной части соответствующего базового выкатного выключателя (без расцепителя), а верхние или нижние полюсы заменяются перемычками, соединяющими фазы с землей через выключатель.

Заземляющий разъединитель выпускается в исполнении - как с верхними, так и с нижними полюсами.

Параметры цепи заземления рассчитаны на кратковременный выдерживаемый ток, равный 60% максимального Icw базового автоматического выключателя (IEC 60439-1). Заземляющий выключатель устанавливается в фиксированную часть выкатного автоматического выключателя и служит для заземления верхних или нижних выводов перед выполнением работ по проверке или техническому обслуживанию внешней цепи в безопасном режиме. Прибор следует применять в установках, где при заземлении могут появиться остаточные или восстанавливающиеся напряжения.

2/10 ABB SACE


Выкатной заземлитель Другие исполнения

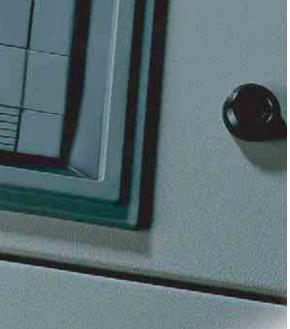
Выкатной заземлитель - МТ

Эта модификация аналогична выкатному разъединителю, за исключением того, что нижние или верхние полюсы закорочены перемычками на землю.

Выкатной заземлитель выпускается с нижними или верхними полюсами.

Параметры цепи заземления рассчитаны на кратковременный выдерживаемый ток, равный 60% максимального Icw базового автоматического выключателя (IEC 60439-1). Выкатной заземлитель временно устанавливается в фиксированную часть выкатного автоматического выключателя для заземления верхних или нижних выводов перед выполнением работ по техническому обслуживанию цепей внешней нагрузки, где нет остаточных напряжений.

Другие исполнения


По специальному заказу автоматические выключатели SACE Emax могут выпускаться в специальных исполнениях, предназначенных для чрезвычайно агрессивных сред (SO2/H2S), для сейсмостойких сооружений либо с расположением нейтрального полюса на правой стороне.

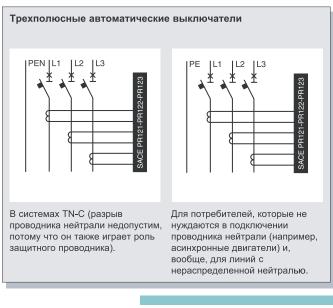
Установка

Установка в распределительных щитах
Модульная конструкция
Выбор типа автоматического выключателя
Допустимая нагрузка по току в
распределительных щитах
Зависимость номинального тока
выключателя от температуры
Изменение номинальных параметров при
отклонении температуры от базового значения 3/7
Зависимость параметров от высоты
над уровнем моря
Кривые ограничения тока и удельной
энергии рассеивания для автоматических
выключателей E2L и E3L

SACE E3

Модульная конструкция

Автоматические выключатели серии SACE изготавливаются в соответствии с принципами модульной конструкции для упрощенной установки и встраивания в электрические распределительные щиты низкого напряжения. Они имеют одинаковую глубину и высоту для всех размеров, и при этом весьма компактны. Кроме того, передняя панель автоматического выключателя одинакова для всей серии. Это упрощает конструкцию дверей распределительного щита, поскольку требуется делать вырезы только одного размера, что придает одинаковый вид распределительному щиту с выключателями всех типоразмеров. Автоматические выключатели SACE Emax пригодны для использования в распределительных щитах трансформаторных подстанций и позволяют легко соблюдать требования по сегрегации Стандартов ІЕС 60439-1.


3/2 ABB SACE

Выбор типа автоматического выключателя

Количество полюсов

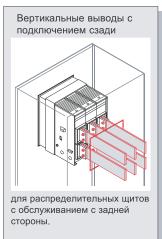
Выбор кол-ва полюсов для автоматических выключателей, которые одновременно обеспечивают функции коммутации, защиты и разъединения в трехфазных установках, зависит от типа электрической системы (TT,TN-S,TN-C,IT) и типа потребителя или, в общем случае, используется ли в них распределенная или нераспределенная нейтраль.

Выключатели стационарного или выкатного исполнения

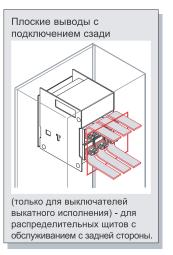
Выключатель стационарного исполнения имеет меньшие габаритные размеры, чем выключатель выкатного исполнения. Его рекомендуется использовать в установках, которые допускают отключение питания для устранения неисправности или проведения планового обслуживания.

Выключатель выкатного исполнения рекомендуется использовать:

- в установках, которые допускают только кратковременное отключение питания для устранения неисправности или проведения планового обслуживания;
- на двойных линиях, одна из которых является резервной, с одним автоматическим выключателем для каждой пары.


Выбор типа автоматического выключателя

Соединение главных цепей автоматического выключателя


При проектировании распределительных щитов, прежде всего, приходится решать проблему наиболее рациональных соединений автоматического выключателя с главной системой шин и шинами потребителей. Выключатели серии SACE Emax предоставляют производителям распределительных щитов широкий выбор различных вариантов подсоединения автоматического выключателя.

На рисунках внизу показаны типы выводов и способы подключения.

Степени защиты

В автоматических выключателях SACE Етмах использовано множество решений, благодаря которым достигнута степень защиты IP22 для стационарных или выкатных автоматических выключателей (кроме их выводов), и IP30 для лицевой панели с использованием фланцевого уплотнения. Для фиксированных частей выкатных автоматических выключателей были разработаны автоматические шторки, которые могут быть заперты при помощи блокировочных устройств, чтобы обеспечить безопасное обслуживание на стороне нагрузки или источника питания фиксированной части.

Кроме того, по специальному заказу может поставляться прозрачная защитная крышка, которая полностью закрывает лицевую панель автоматического выключателя, обеспечивая степень защиты IP54, при этом полностью видна передняя панель и все обозначения расцепителя.

- **IP22** Стационарный или выкатной автоматический выключатель, за исключением выводов.
- **IP30** Лицевая панель автоматических выключателей (при использовании фланцевого уплотнения).
- **IP54** Стационарный или выкатной автоматический выключатель, оснащенный прозрачной защитной крышкой, которая устанавливается с лицевой стороны распределительного щита, (по заказу).

3/4 ABB SACE

Тепловые потери

Стандарты IEC, 439-1 и CEI EN 60439-1 предписывают вычислять рассеиваемую мощность распределительных щитов ANS (нестандартных), с учетом следующего:

- габаритные размеры;
- номинальный ток шин и соединений, значения рассеиваемой ими мощности;
- мощность, рассеиваемая на устройствах, которые установлены в распределительном щите.

В следующей таблице представлена информация об автоматических выключателях. Данные о другом оборудовании см. в каталогах соответствующих производителей.

Рассеиваемая	мощность		
Выключатель	lu	Стационарный 3/4 полюса	Выкатной 3/4 полюса
	[A]	[Вт]	[Вт]
E1 B-N	800	65	95
	1250	150	230
	1600	253	378
E2 B-N-S	800	29	53
	1250	70	130
	1600	115	215
	2000	180	330
E2 L	1250	105	165
	1600	170	265
E3 N-S-H-V	800	22	36
	1250	60	90
	1600	85	150
	2000	130	225
	2500	205	350
	3200	330	570
E3 L	2000	215	330
	2500	335	515
E4 S-H-V	3200	235	425
	4000	360	660
E6 H-V	3200	170	290
	4000	265	445
	5000	415	700
	6300	650	1100

Примечание

Табличные данные соответствуют автоматическим выключателям для сбалансированных нагрузок и потребляемого тока lu.

Примечание

Те же самые Стандарты предписывают типовые испытания распределительных щитов AS (стандартного заводского изготовления), включая испытания при максимальной рабочей температуре.

Допустимая нагрузка по току в распределительных щитах

В качестве примера в следующей таблице приводятся значения допустимых нагрузок по току для выключателей, установленных в распределительных щитах с указанными ниже размерами.

Данные значения относятся к выключателям выкатного исполнения, установленным в распределительном щите без перегородок со степенью защиты до IP31 (включительно) и следующими габаритами:

2300x800x900 (BxLlxГ) для E1-E2-E3; 2300x1400x1500 (BxLlxГ) для E4-E6.

Эти значения соответствуют максимальной температуре выводов 120 °C.

Для выкатных автоматических выключателей с номинальным током 6300 A рекомендуется использовать вертикальные выводы с подключением сзади.

Примечание:

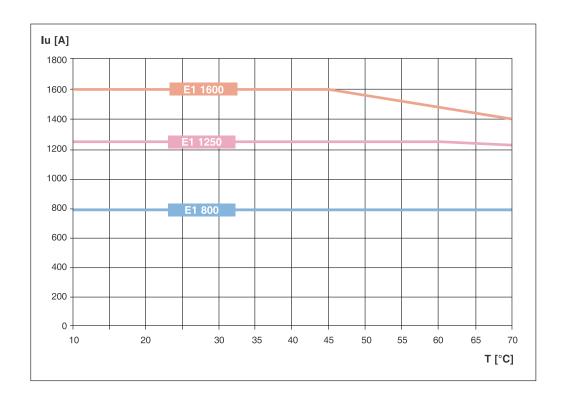
Данную таблицу следует использовать только для получения общей информации при выборе продукции. Вследствие широкого разнообразия форм конструкции распределительных щитов и рабочих условий, способных повлиять на функционирование аппаратуры, принятое решение всегда должно проверяться.

		Ве	ртикальн	ные выв	оды		альные і одключен		и выводы еди
Тип	lu [A]	Длит	ельная нагр [А]	узка	Сечение шин [мм ²]	Длит	ельная нагр [А]	узка	Сечение шин [мм²]
		35°C	45°C	55°C		35°C	45°C	55°C	
E1B/N 08	800	800	800	800	1x(60x10)	800	800	800	1x(60x10)
E1B/N 12	1250	1250	1250	1250	1x(80x10)	1250	1250	1200	2x(60x8)
E1B/N 16	1600	1600	1600	1500	2x(60x10)	1550	1450	1350	2x(60x10)
E2S 08	800	800	800	800	1x(60x10)	800	800	800	1x(60x10)
E2N/S 12	1250	1250	1250	1250	1x(60x10)	1250	1250	1250	1x(60x10)
E2B/N/S 16	1600	1600	1600	1600	2x(60x10)	1600	1600	1530	2x(60x10)
E2B/N/S 20	2000	2000	2000	1800	3x(60x10)	2000	2000	1750	3x(60x10)
E2L 12	1250	1250	1250	1250	1x(60x10)	1250	1250	1250	1x(60x10)
E2L 16	1600	1600	1600	1500	2x(60x10)	1600	1500	1400	2x(60x10)
E3H/V 08	800	800	800	800	1x(60x10)	800	800	800	1x(60x10)
E3S/H/V 12	1250	1250	1250	1250	1x(60x10)	1250	1250	1250	1x(60x10)
E3S/H/V 16	1600	1600	1600	1600	1x(100x10)	1600	1600	1600	1x(100x10)
E3S/H/V 20	2000	2000	2000	2000	2x(100x10)	2000	2000	2000	2x(100x10)
E3N/S/H/V 25	2500	2500	2500	2500	2x(100x10)	2500	2450	2400	2x(100x10)
E3N/S/H/V 32	3200	3200	3100	2800	3x(100x10)	3000	2880	2650	3x(100x10)
E3L 20	2000	2000	2000	2000	2x(100x10)	2000	2000	1970	2x(100x10)
E3L 25	2500	2500	2390	2250	2x(100x10)	2375	2270	2100	2x(100x10)
E4H/V 32	3200	3200	3200	3200	3x(100x10)	3200	3150	3000	3x(100x10)
E4S/H/V 40	4000	4000	3980	3500	4x(100x10)	3600	3510	3150	6x(60x10)
E6V 32	3200	3200	3200	3200	3x(100x10)	3200	3200	3200	3x(100x10)
E6H/V 40	4000	4000	4000	4000	4x(100x10)	4000	4000	4000	4x(100x10)
E6H/V 50	5000	5000	4850	4600	6x(100x10)	4850	4510	4250	6x(100x10)
E6H/V 63	6300	6000	5700	5250	7x(100x10)	-	-	-	-

3/6 ABB SACE

Зависимость номинального тока выключателя от температуры

Изменение номинальных параметров при отклонении температуры от базового значения

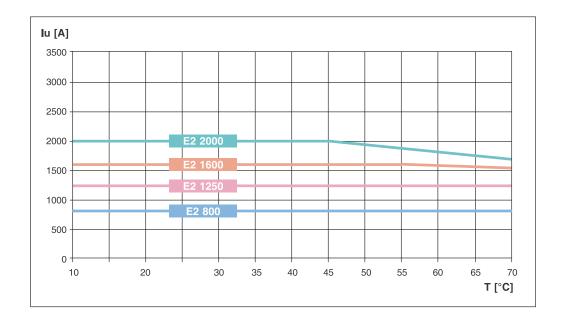

В некоторых установках автоматические выключатели могут работать при температуре, превышающей базовое значение (40 °C). В этих случаях у выключателя снижается значение длительно допустимого тока.

В автоматических выключателях серии SACE Emax используются микропроцессорные электронные расцепители, которые имеют высокую стабильность параметров в широком температурном диапазоне.

В таблицах ниже приводится зависимость длительно допустимого тока автоматических выключателей (в абсолютных единицах и процентах) относительно номинального тока при температуре $T=40\,^{\circ}\mathrm{C}$.

SACE Emax E1

Температура	E1 -	800	E1 :	1250	E1 :	1600
[°C]	%	[A]	%	[A]	%	[A]
10	100	800	100	1250	100	1600
20	100	800	100	1250	100	1600
30	100	800	100	1250	100	1600
40	100	800	100	1250	100	1600
45	100	800	100	1250	98	1570
50	100	800	100	1250	96	1530
55	100	800	100	1250	94	1500
60	100	800	100	1250	92	1470
65	100	800	99	1240	89	1430
70	100	800	98	1230	87	1400

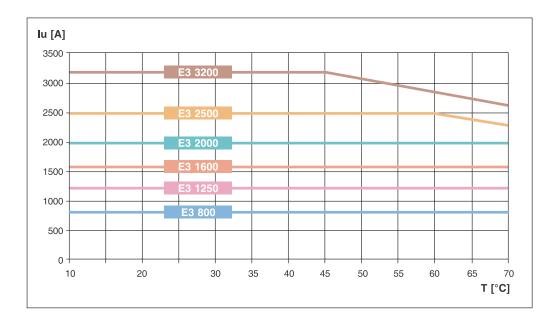


Зависимость номинального тока выключателя от температуры

Уменьшение номинальных параметров при отклонении температуры от базового значения

SACE Emax E2

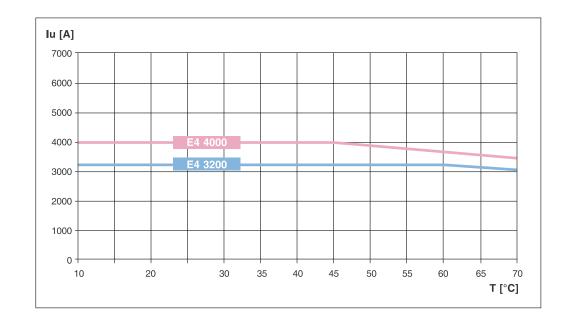
Температура	E2	800	E2	1250	E2	1600	E2	2000
[°C]	%	[A]	%	[A]	%	[A]	%	[A]
10	100	800	100	1250	100	1600	100	2000
20	100	800	100	1250	100	1600	100	2000
30	100	800	100	1250	100	1600	100	2000
40	100	800	100	1250	100	1600	100	2000
45	100	800	100	1250	100	1600	100	2000
50	100	800	100	1250	100	1600	97	1945
55	100	800	100	1250	100	1600	94	1885
60	100	800	100	1250	98	1570	91	1825
65	100	800	100	1250	96	1538	88	1765
70	100	800	100	1250	94	1510	85	1705



3/8 ABB SACE

SACE Emax E3

Температура	E3	800	E3 ⁻	250		E3 1600		E3 2000		E3 2500		E3 3200
[C°]	%	[A]	%	[A]	%	[A]	%	[A]	%	[A]	%	[A]
10	100	800	100	1250	100	1600	100	2000	100	2500	100	3200
20	100	800	100	1250	100	1600	100	2000	100	2500	100	3200
30	100	800	100	1250	100	1600	100	2000	100	2500	100	3200
40	100	800	100	1250	100	1600	100	2000	100	2500	100	3200
45	100	800	100	1250	100	1600	100	2000	100	2500	100	3200
50	100	800	100	1250	100	1600	100	2000	100	2500	97	3090
55	100	800	100	1250	100	1600	100	2000	100	2500	93	2975
60	100	800	100	1250	100	1600	100	2000	100	2500	89	2860
65	100	800	100	1250	100	1600	100	2000	97	2425	86	2745
70	100	800	100	1250	100	1600	100	2000	94	2350	82	2630

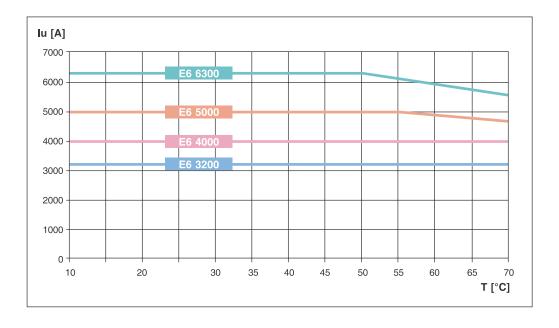


Зависимость номинального тока выключателя от температуры

Уменьшение номинальных параметров при отклонении температуры от базового значения

SACE Emax E4

Температура	E4 3	3200	E4 4	1000
[°C]	%	[A]	%	[A]
10	100	3200	100	4000
20	100	3200	100	4000
30	100	3200	100	4000
40	100	3200	100	4000
45	100	3200	100	4000
50	100	3200	98	3900
55	100	3200	95	3790
60	100	3200	92	3680
65	98	3120	89	3570
70	95	3040	87	3460



3/10 ABB SACE

SACE Emax E6

Температура	E6 3	3200	E6 4	1000	E6	5000	E6 6	300	
[°C]	%	[A]	%	[A]	%	[A]	%	[A]	
10	100	3200	100	4000	100	5000	100	6300	
20	100	3200	100	4000	100	5000	100	6300	
30	100	3200	100	4000	100	5000	100	6300	
40	100	3200	100	4000	100	5000	100	6300	
45	100	3200	100	4000	100	5000	100	6300	
50	100	3200	100	4000	100	5000	100	6300	
55	100	3200	100	4000	100	5000	98	6190	
60	100	3200	100	4000	98	4910	96	6070	
65	100	3200	100	4000	96	4815	94	5850	
70	100	3200	100	4000	94	4720	92	5600	

Зависимость параметров от высоты над уровнем моря

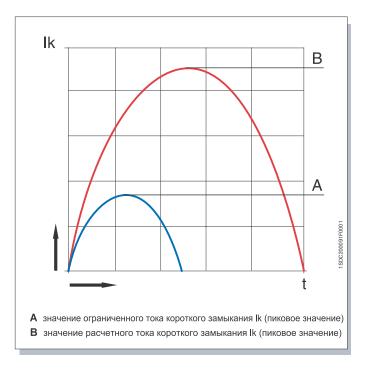
До высоты 2000 метров над уровнем моря значения параметров автоматических выключателей SACE Emax не изменяются. С увеличением высоты изменяются свойства среды, в которой работают выключатели: состав, диэлектрическая проницаемость, охлаждающая способность и давление.

Зависимость от высоты выражается в основном в уменьшении основных параметров - максимального рабочего напряжения и номинального тока выключателя.

В табл. ниже приводится зависимость этих значений от высоты.

Высота над уровнем моря	Н	[M]	<2000	3000	4000	5000
Номинальное рабочее напряжение	Ue	[B]	690	600	500	440
Номинальный ток	In	[A]	ln	0.98xIn	0.93xln	0.90xIn

3/12 ABB SACE

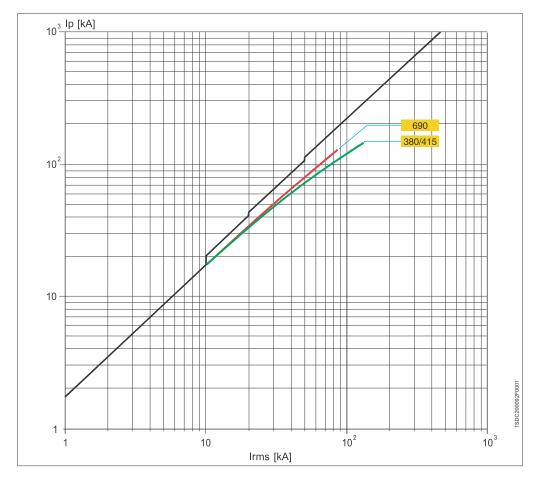


Кривые ограничения тока и удельной энергии рассеивания для автоматических выключателей E2L и E3L

Токоограничивающий автоматический выключатель характеризуется способностью в той или иной степени пропускать или уменьшать значение протекающего через него тока (по отношению к значению расчетного тока) в условиях короткого замыкания. Эта характеристика токоограничивающего автоматического выключателя представлена двумя различными кривыми, которые соответственно указывают следующее:

- значение удельной энергии рассеивания " I^2 t"(в A^2 c) в зависимости от действующего значения симметричной составляющей тока короткого замыкания.
- пиковое значение (в кА) ограниченного тока в зависимости от действующего значения симметричной составляющей тока короткого замыкания.

На графике справа в общем виде показаны переходный процесс изменения тока короткого замыкания без ограничения, с соответствующим пиковым значением (кривая В), а также переходный процесс изменения ограниченного тока с наименьшим пиковым значением (кривая А). Сравнивая площади участков под данными кривыми, можно видеть снижение удельной энергии рассеивания в результате ограничивающего действия выключателя.

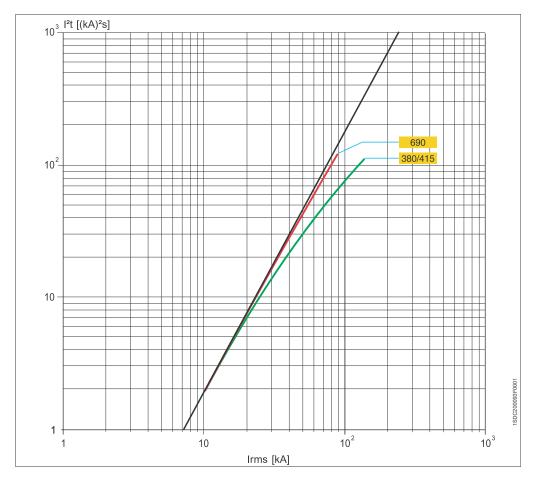


Кривые ограничения тока и удельной энергии рассеивания для автоматических выключателей E2L и E3L

E₂L

Кривые ограничения тока

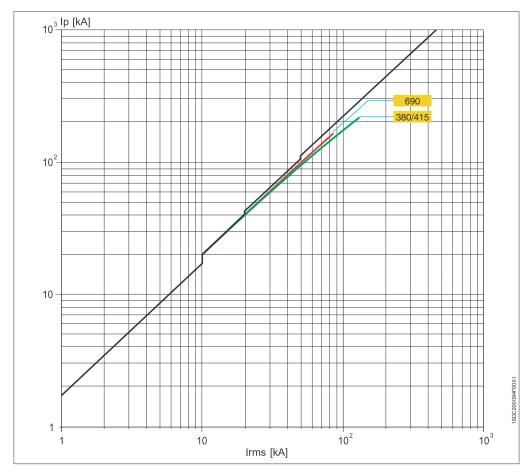
E2L


Кривые удельной энергии рассеивания

Irms значение

симметричной составляющей расчетного тока короткого замыкания

Ір пиковое значение


тока
значение
удельной энергии
рассеивания при
указанных
напряжениях

E3L

Кривые ограничения тока

E3L

Кривые удельной энергии рассеивания

Ip пиковое значение тока **3** значение удельной энергии рассеивания при указанных напряжениях

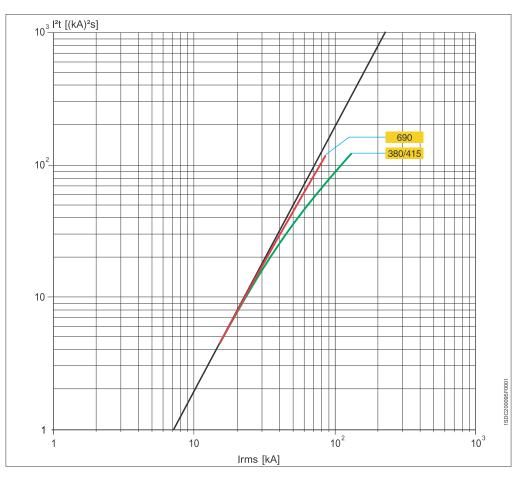
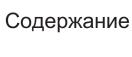
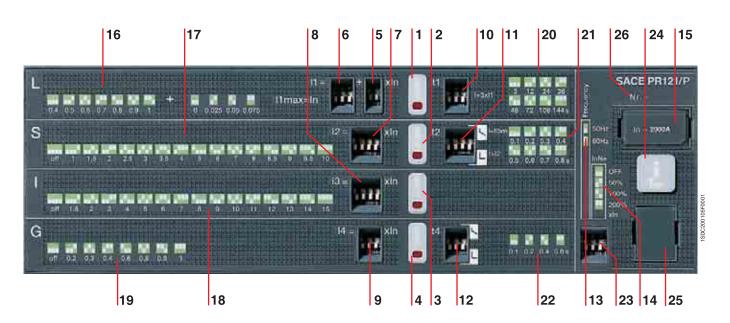



ABB SACE

4/1

Расцепители защиты и аксессуары к ним

Расцепители защиты и кривые срабатывания
PR121/P
PR122/P
PR123/P
Аксессуары для расцепителей защиты
Внутренний сигнальный блок PR120/K
Блок измерения PR120/V
Диалоговый блок PR120/D-M
Беспроводный диалоговый блок PR120/D-BT
Беспроводный блок ВТ030
Блок питания PR130/B
Интерфейсный блок НМІ030
Прибор для тестирования и программирования
SACE PR010/T
Сигнальный блок SACE PR021/K
Устройства и системы связи
Организация промышленных сетей и ABB SACE Emax
PR120/D
BT030
EP010 - FBP
SD-View 2000
SD-Pocket
TootPus?



Расцепители защиты и кривые срабатывания PR121/P

Характеристики

PR121/Р является новым основным расцепителем для серии Emax. Полный набор защитных функций в сочетании с множеством пороговых значений и уставок времени срабатывания позволяет его применять для защиты различных установок переменного тока. Кроме защитных функций, устройство оснащено многофункциональными светодиодными индикаторами. Более того, PR121/Р можно подключать к внешним устройствам, и тем самым расширять его возможности по дистанционной сигнализации и передаче данных.

Условные обозначения

- 1 Светодиод аварийного сигнала для защитной функции L
- Светодиод аварийного сигнала для защитной функции S
- Светодиод аварийного сигнала для защитной функции I
- Светодиод аварийного сигнала для защитной функции G
- 5 DIP-переключатели для тонкой настройки порогового значения тока I1
- 6 DIP-переключатели для основной настройки порогового значения тока I1
- 7 DIP-переключатели для установки порогового значения тока I2
- 8 DIP-переключатели для установки порогового значения тока I3
- 9 DIP-переключатели для установки порогового значения тока I4

- 10 DIP-переключатели для установки времени срабатывания t1 (тип кривой)
- DIP-переключатели для установки времени срабатывания t2 (тип кривой)
- DIP-переключатели для установки времени срабатывания t4 (тип кривой)
- 13 Положения DIP-переключателя для установки частоты сети
- **14** Положения DIP-переключателей для установки защиты нейтрали
- 15 Модуль номинального тока
- 16 Положения DIP-переключателей для различных пороговых значений тока I1
- 17 Положения DIP-переключателей для различных пороговых значений тока I2
- 18 Положения DIP-переключателей для различных пороговых значений тока I3
- 19 Положения DIP-переключателей для различных пороговых значений тока 14

- **20** Положения DIP-переключателей для различных уставок по времени t1
- 21 Положения DIP-переключателей для различных уставок по времени t2
- 22 Положения DIP-переключателей для различных уставок по времени t4
- 23 DIP-переключатели для установки частоты сети и защиты нейтрали
- 24 Индикация причины срабатывания и кнопка тестирования срабатывания
- 25 Тестовый разъем для подключения или тестирования расцепителя через внешнее устройство (блок питания PR130/B, блок беспроводной связи BT030 и прибор SACE PR010/T)
- 26 Серийный номер расцепителя

4/2 ABB SACE

Работа и функции защиты

Защитные функции

Расцепитель PR121 выполняет следующие защитные функции:

- защита от перегрузки (L);
- селективная защита от короткого замыкания (S);
- мгновенная защита от короткого замыкания (I);
- защита от замыкания на землю (G).

Защита от перегрузки (L)

Защита от перегрузки L с обратнозависимой длительной задержкой срабатывания описывается функцией I^2t = k; существует 25 пороговых значений по току и 8 кривых. Каждая кривая определяется временем срабатывания по отношению к току I = 3 x I1 (I1 = заданное пороговое значение).

Селективная защита от короткого замыкания (S)

Функция селективной защиты от короткого замыкания (S) может быть определена двумя различными типами кривых: с независящим от тока временем сра-

батывания (t = k) или с постоянной удельной энергией (t = k/12).

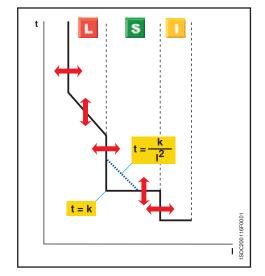
Существует 15 пороговых значений по току и 8 кривых, что позволяет осуществить тонкую настройку. Каждая кривая определяется следующим образом:

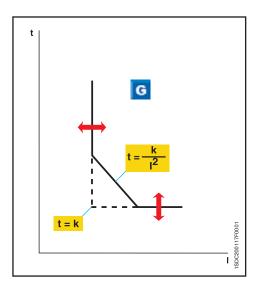
- для кривых t = k временем срабатывания для I > I2;
- для кривых $t = k/l^2$ временем срабатывания для $l = 10 \times ln$ (ln = номи-нальный ток автоматического выключателя).

Эта функция может быть отключена установкой DIP-переключателей в положение "OFF" (Выкл.).

Регулируемая мгновенная защита от короткого замыкания (I)

Защитная функция I имеет 15 пороговых значений срабатывания и может быть отключена (DIP-переключатели в положении "OFF" (Выкл.)).


Защита от замыкания на землю (G)


Функция защиты от замыкания на землю G (может быть отключена) имеет 7 пороговых значений по току и 4 кривых. Каждая кривая определяется временем t4 по отношению к току I4. Как и для защитной функции S, время срабатывания можно выбирать независимо от тока (t=k) или с постоянным значением удельной энергии $(t=k/l^2)$.

Примечание: функция G подавляется для значений тока, превышающих значения, приведённые в следующей таблице.

Пороговое значение 14	Пороговое значение подавления
14 < 0,5 In	4 In
0,5 ln≤ l4 < 0,8 ln	6 In
I4≥ 0,8 In	8 ln

In = значение модуля номинального тока .

Защитные расцепители и кривые срабатывания PR121/P

Интерфейс пользователя

На этапе установки параметров срабатывания пользователь управляет непосредственно расцепителем с помощью DIP-переключателей.

Для сигнализации существуют светодиоды (в зависимости от исполнения: 2,3 или 4). Эти светодиоды (по одному для каждой защитной функции) активны в следующих случаях:

- идёт отсчёт времени срабатывания защиты; для защитной функции L указывается также предаварийное состояние;
- срабатывание защиты (соответствующий светодиод включается нажатием на кнопку "info/Test");
- обнаружен обрыв соединения датчика тока или неисправность отключающего электромагнита; индикация возможна, когда на устройство подаётся электропитание (через датчики тока или вспомогательный источник электропитания);
- модуль номинального тока, неподходящий для автоматического выключателя.

Индикация срабатывания защиты работает даже при разомкнутом автоматическом выключателе, не требуя никакого внутреннего или внешнего вспомогательного источника электропитания. Эта информация хранится в течение 48 часов простоя после размыкания и остается доступной после повторного замыкания. Если сделать запрос после 48-часового периода, то для восстановления информации достаточно подключить блок питания PR130/B, текстовый блок PR010/T или блок беспроводной связи BT030.

Связь

С помощью блока беспроводной связи BT030 расцепитель PR121/P можно подключить к карманному компьютеру (PDA) или персональному компьютеру, расширяя тем самым доступный диапазон информации. Фактически, с помощью программного обеспечения SD-Pocket компании ABB SACE можно считывать величину протекающих через автоматический выключатель токов, величину токов последних 20 срабатываний и уставки защитных функций. PR121 можно также подключить к внешнему сигнальному устройству PR021/K для дистанционной сигнализации аварийного состояния и срабатывания защиты, и к HMI030 для реализации удаленного пользовательского интерфейса.

Уставка защиты нейтрали

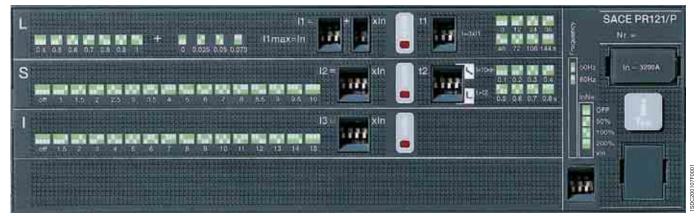
Уставки функции защиты нейтрали можно задать равными 50%, 100% или 200% от уставки защиты фаз. Для E1-E2-E3-E4/f и E6/f можно задать уставки выше 50%. В частности, уставка защиты нейтрали, равная 200% от уставки защиты фаз, требует для защитной функции L уставки 0,5 In, чтобы учесть допустимую нагрузку автоматического выключателя по току. Пользователь может также отключить защиту нейтрали. При использовании трёхполюсных автоматических выключателей с внешним датчиком тока нейтрали уставка защиты нейтрали выше 100% не требует снижения уставки функции L.

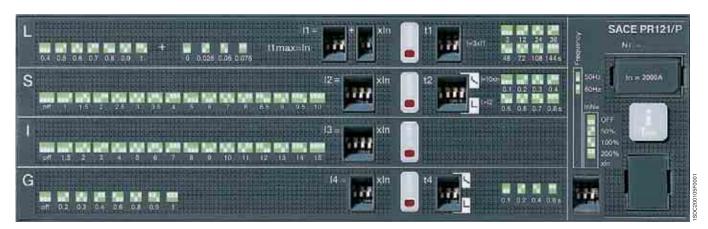
Функция тестирования

Функция тестирования выполняется с помощью кнопки "info/Test" и блока питания PR130/B (или BT030), оснащённого полярным соединителем, находящимся в нижней части корпуса, что позволяет подключить устройство к разъему тестирования на передней панели расцепителей PR121/P.

Электронный расцепитель PR121/P можно тестировать с помощью прибора для тестирования и программирования SACE PR010/T, который подключается разъему тестирования TEST.

Все функции расцепителя можно проверять в полном объеме с помощью тестового комплекта TS120, который позволяет подавать моделируемые значения тока на расцепитель и полностью проверять правильность его работы. Для использования этого устройства расцепитель следует отсоединить от автоматического выключателя.


4/4 ABB SACE


Существующие исполнения:

PR121/P LI

PR121/P LSI

PR121/P LSIG

Расцепители защиты и кривые срабатывания PR121/P

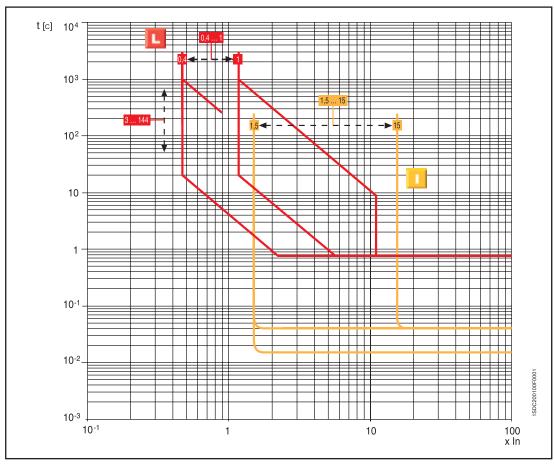
ункці	ия	Пороговое значение срабатывания	Время срабатывания	Функция отключается	Зависимость t=f(l)
L	Защита от перегрузки	I1= 0,4 - 0.425 - 0.45 - 0.475 - 0.5 - 0.525 - 0.55 - 0.575 - 0.6 - 0.625 - 0.65 - 0.675 - 0.7 - 0.725 - 0.75 - 0.775 - 0.8 - 0.825 - 0.85 - 0.875 0.9 - 0.925 - 0.95 - 0.975 - 1 x In	$t1 = 3 - 12 - 24 - 36 - 48 - 72 - 108 - 144 c$ (1) при $I = 3 \times I_1$	-	t=k/l ²
	Точность ⁽²⁾	Срабатывание между 1,05 и 1,2 х I1	± 10% lg≤4 x ln ± 20% lg>4 x ln		
	Селективная защита от короткого замыкания	12 = 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 5 6 - 7 - 8 - 8.5 - 9 - 9.5 - 10 x In	При токе I > I2 t2 = 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 c	=	t=k
	Точность (2)	$\pm 7\%$	Лучшая из двух следующих величин: ± 10% или ± 40 мс		
		12 = 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 5 6 - 7 - 8 - 8.5 - 9 - 9.5 - 10 x In	При токе I = 10 x In t2 = 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 c		t=k/l ²
	Точность ⁽²⁾	$\pm 7\%$ Ig $\leq 4 \times In$ $\pm 10\%$ Ig $>4 \times In$	± 15% lg≤ 4 x ln ± 20% lg> 4 x ln		
I	Мгновенная защита от короткого замыкани	I3 = 1.5 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 1я 9 - 10 - 11 - 12 - 13 - 14 - 15 х In	Мгновенное срабатывание	•	t=k
	Точность ⁽²⁾	± 10%	≤ 30 MC		
G	Защита от замыкания на землю	14 = 0.2 - 0.3 - 0.4 - 0.6 - 0.8 - 0.9 - 1 x In	При токе I = 4 x I4 t4 = 0.1 - 0.2 - 0.4 - 0.8 c	•	t=k/l ²
	Точность(2)	± 7%	± 15%		
		14 = 0.2 - 0.3 - 0.4 - 0.6 - 0.8 - 0.9 - 1 x In	При токе I > I4 t4 = 0.1 - 0.2 - 0.4 - 0.8 c	•	t=k
	Точность(2)	± 7%	Лучшая из двух следующих величин: ± 10	9% или ± 40 мс	

- (1) Минимальное время срабатывания равно 1 с, независимо от типа заданной кривой (самозащита).
- (2) Эти значения действительны в следующих условиях:
- срабатывание при питании от сети;
- двух- или трёхфазное питание;
- заданное время срабатывания≥100 мс.

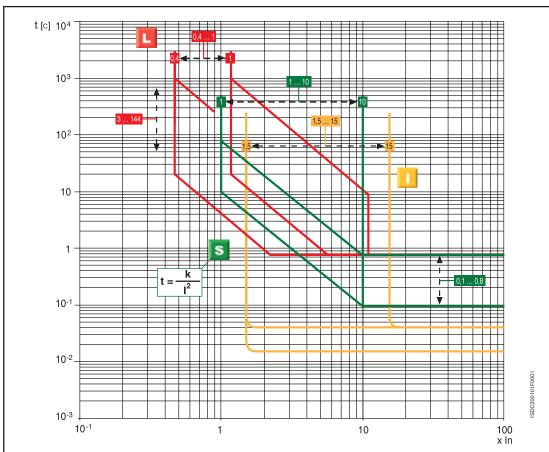
Во всех случаях, которые не упомянуты выше, применимы следующие значения точности срабатывания:

	Пороговое значение срабатывания	Время срабатывания
LC	Срабатывание между 1,05 и 1,25 x I1	± 20%
S	± 10%	± 20%
I	± 15%	≤ 60мс
G	± 15%	± 20%

Питание расцепителя

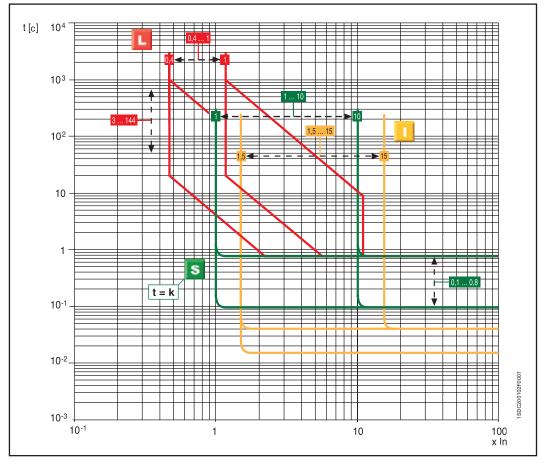

Расцепитель не требует внешнего источника питания ни для защитных функций, ни для функций аварийной сигнализации. Он питается от установленных в автоматическом выключателе датчиков тока. Для его работы достаточно, чтобы хотя бы по одной фазе протекал ток не менее 100 А. Для того чтобы активировать дополнительные функции и, в частности, для подключения к внешним устройствам: HMI030 и PR021/K, необходимо подключить внешнее питание.

	PR121/P
Вспомогательный источник питания (гальванически изолированный)	24 В постоянного тока ± 20%
Максимальная амплитуда пульсации	5%
Пусковой ток при 24 В	~10 А в течение 5 мс
Номинальная мощность при 24 В	~2 Вт

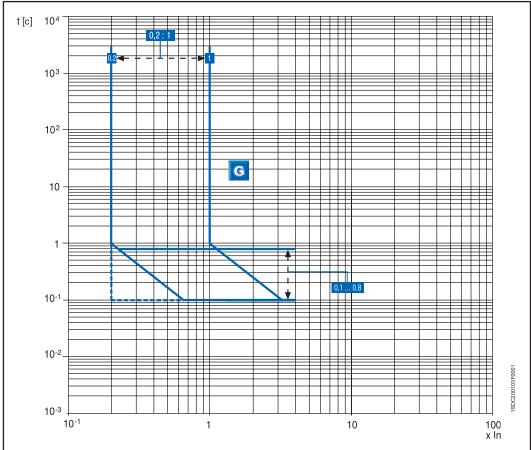

4/6 ABB SACE

Функции L-I

Функции L-S-I



Точность на пороговые значения и время срабатывания...стр. 4/6



Расцепители защиты и кривые срабатывания PR121/P

Функции L-S-I

Функция **G**

Точность на пороговые значения и время срабатывания...стр. 4/6

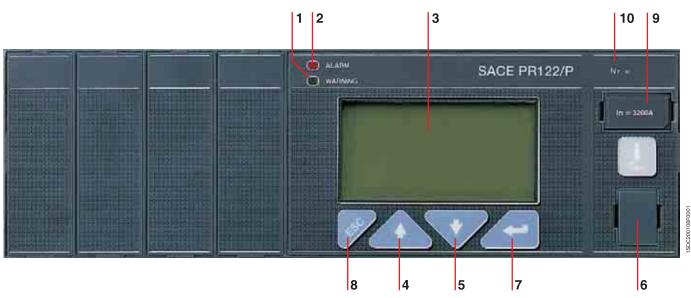
4/8 ABB SACE

Расцепители защиты и кривые срабатывания PR122/P

Характеристики

Расцепитель SACE PR122 представляет собой сложную и гибкую систему защиты на основе современной микропроцессорной и DSP технологии. Он может быть оснащён дополнительным внутренним блоком обмена данными PR120/D-M, который превращает PR122/P в интеллектуальное устройство защиты, измерения и связи на базе протокола Modbus®. С помощью PR120/D-M расцепитель PR122/P можно также подключить к адаптеру ABB EP010 Fieldbus plug, что позволяет выбирать одну из нескольких разных сетей, таких как Profibus и DeviceNet.

Новый PR122/P является результатом опыта ABB SACE в разработке защитных расцепителей. Широкий диапазон регулировок делает это защитное устройство идеальным для общего использования при любом типе установки - от распределения до защиты электродвигателей, трансформаторов, приводов и генераторов.


Считывание информации и программирование очень простое и понятное, и осуществляется с помощью клавиатуры и графического жидкокристаллического дисплея. В настоящее время интерфейс является общим для PR122/P и PR123/P, чтобы обеспечить пользователю максимальную простоту использования.

Кроме защитных функций он имеет функцию амперметра и много других дополнительных функций. Эти дополнительные функции можно еще расширить, подключив блоки обмена данными, сигнализации, измерения и беспроводной связи.

Защита с использованием функций S и G может срабатывать с задержкой по времени независимо от тока (t = k) или с обратнозависимой задержкой (постоянная удельная энергия: I $^{+}$ t = k), в зависимости от требований электроустановки.

Защита от замыкания на землю достигается также подсоединением расцепителя PR122 к внешнему тороиду, расположенному на проводнике, который соединяет центр "звезды" трансформатора с землёй (униполярный тороид).

Все пороговые значения, задержки срабатывания и кривые защитных функций записываются в специальную память, которая сохраняет информацию даже при отключении питания.

Условные обозначения

- 1 Светодиодный индикатор "Warning" (Предупреждение)
- **2** Индикатор "Alarm" (Авария)
- 3 Графический дисплей с подсветкой
- 4 Кнопка перемещения курсора BBenx (UP)
- 5 Кнопка перемещения курсора вниз (DOWN)
- беспроводной связи ВТ030 и устройство SACE PR010/T) 7 Kнопка ENTER для подтверждения данных или смены страниц

подключения или тестирования

расцепителя с помощью

питания PR130/B, блок

внешнего устройства (блок

- 8 Кнопка выхода из подменю или отмены операций (ESC)
- 9 Модуль номинального тока
- 10 Серийный номер расцепителя

6 Тестовый разъем для

Расцепители защиты и кривые срабатывания PR122/P

Работа, функции защиты и самотестирование

Основные функции защиты

Расцепитель PR122 выполняет следующие функции защиты (в зависимости от исполнения):

- защита от перегрузки (L);
- селективная защита от короткого замыкания (S);
- мгновенная защита от короткого замыкания (I);
- защита от замыкания на землю (G);
- защита от перекоса фаз (U);
- самозащита от превышения температуры (ОТ);
- тепловая память для функций L и S;
- зонная селективность для функций S и G;
- защита от дифференциального тока (Rc) с внешним тороидом;
- защита от замыкания на землю источника питания с помощью внешнего тороида.

Защита нейтрали

PR122/P и PR123/P уставка защиты нейтрали составляет 50% от значения уставки защиты фазы для стандартного исполнения. Функцию защиты нейтрали можно отключить установить на 100% для Е1, E2, E3, E4/f и E6/f. B установках, где могут встречаться очень высокие гармоники, результирующий ток в нейтрали может быть выше, чем в фазах. Поэтому уставку функции защиты нейтрали можно задать равной 150% или 200% от значения уставки для фаз. В этом необходимо случае соответственно уменьшить значение уставки защитной функции $L^{(1)}$.

В приведённой ниже таблице перечислены уставки защиты нейтрали при различных возможных комбинациях типов автоматических выключателей и уставок пороговых значений I1.

Функция запуска

Функция запуска позволяет защитным функциям S, I и G работать с более высокими пороговыми значениями срабатывания на этапе запуска. Это позволяет избежать нежелательного срабатывания. вызванного высокими пусковыми токами некоторых нагрузок (электродвигателей, трансформаторов, ламп).

Этап запуска длится от 100 мс до 1,5 с, с шагом 0,05 с. Он автоматически распознаётся расцепителем PR122 следующим образом:

- когда автоматический выключатель замыкается при питании расцепителя от сети:
- когда пиковое значение максимального тока превышает 0,1 х ln. Новый запуск становится возможным после того, как ток упадёт ниже пороговой величины 0,1 х ln, если питание расцепителя осуществляется от внешнего источника.

Регулируемые уставки функции защиты нейтрали								
Уставки пороговых значений I1 (защита от перегрузки)								
Тип автомат. выключателя	0.4≤ I1≤ 0.5	0.5 < l1≤ 0.66	0.66 < I1 ≤ 1(*)					
E1B-N	0-50-100-150-200%	0-50-100-150%	0-50-100%					
E2B-N-S-L	0-50-100-150-200%	0-50-100-150%	0-50-100%					
E3N-S-H-V-L	0-50-100-150-200%	0-50-100-150%	0-50-100%					
E4S-H-V	0-50-100%	0-50%	0-50%					
E4S/f-H/f	0-50-100-150-200%	0-50-100-150%	0-50-100%					
E6H-V	0-50-100%	0-50%	0-50%					
E6H/f	50-100-150-200%	0-50-100-150%	0-50-100%					

^(*) Уставка I1 = 1 является максимальной уставкой функции защиты от перегрузки. Фактическая максимальная допустимая уставка должна учитывать все изменения номиналов в зависимости от температуры, используемых силовых выводов и высоты (см. главу "Установка").

4/10 ABB SACE

⁽¹⁾ При использовании трёхполюсных автоматических выключателей с внешним датчиком тока нейтрали уставка защиты нейтрали выше 100% не требует уменьшения значения уставки L для фаз.

Защита от перекоса фаз U

Функция защиты от перекоса фаз U используется в тех ситуациях, которые требуют особо точного контроля в случае пропадания или перекоса фазных токов. Эту функцию можно отключить.

Защита от превышения температуры

Расцепители серии SACE PR122 сигнализируют пользователю о наличии аномальных температур, которые могут вызвать кратковременный или продолжительный сбой работы микропроцессора. В распоряжении пользователя имеются следующие сигналы и команды:

- светодиод предупреждения "Warning" загорается при превышении температуры 70°С (температура, при которой микропроцессор еще продолжает нормально работать);
- светодиод аварии "Alarm" загорается при превышении температуры 85°С (температура, свыше которой микропроцессор больше не может обеспечить нормальную работу), с одновременным размыканием автоматического выключателя (если это задано в процессе конфигурации) и индикацией срабатывания на дисплее, как для других защитных функций.

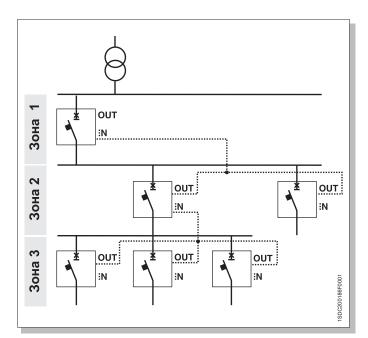
Зонная селективность для функций S и G

Зонная селективность – один из самых прогрессивных методов координации защитных функций: с его помощью можно уменьшить время срабатывания ближайшей к месту аварии защиты по сравнению с временем, предусмотренным системой селективности по времени.

Зонная селективность применима к защитным функциям S и G и входит в стандартную комплектацию PR122.

Слово "зона" используется для обозначения части установки между двумя последовательно

включёнными автоматическими выключателями


(см. рисунок рядом).

Защита обеспечивается соединением вместе всех зонных выходов расцепителей, принадлежащих одной зоне, и направлением этого сигнала на зонный вход расцепителя на стороне питания.

Каждый автоматический выключатель, который обнаруживает аварию, сообщает об этом автоматическому выключателю на стороне питания с помощью простого проводника.

Поэтому зоной аварии является зона. расположенная на стороне нагрузки того автоматического выключателя, который обнаружил аварию, но не получил никакого сообщения от автоматических выключателей, расположенных ниже. Этот автоматический выключатель размыкается, не дожидаясь истечения заданной задержки по времени.

Функцию зонной селективности S и G можно включить или выключить с помощью клавиатуры.

Расцепители защиты и кривые срабатывания PR122/P

Защита от перекоса фаз U

Функция защиты от перекоса фаз U просто выдаёт сигнал предупреждения, если между двумя или более фазами обнаруживается асимметрия. Эту функцию можно отключить.

Самодиагностика

Расцепители серии PR122 содержат электронную цепь, которая периодически проверяет целостность внутренних соединений (размыкающий электромагнит или каждый датчик тока, включая функцию защиты от замыкания на землю источника питания, если она присутствует).

В случае неисправности на дисплее появляется аварийное сообщение. На аварийное состояние указывает также горящий светодиод "Alarm".

Защита от остаточных токов

Существуют разные решения для встроенной защиты от остаточных токов. Основным является PR122/P-LSIRc, который имеет все характеристики PR122/P-LSI плюс защиту от остаточных токов. Когда требуются дополнительные функции, используется PR122/P LSIG с дополнительным блоком PR120/V. При использовании такой конфигурации защита от остаточных токов добавляется к мощному устройству, обладающему функциями PR122/P-LSI и всеми дополнительными функциями, которые предлагает блок PR120/V, такими как защита по напряжению и различные измерения.

Защита от остаточных токов действует путём измерения тока из специального внешнего тороида.

Функции тестирования

После активирования через меню кнопка "info/Test" на передней панели позволяет проверить корректность работы цепи, состоящей из микропроцессора, отключающего соленоида и размыкающего механизма автоматического выключателя.

Меню управления также включает в себя функцию тестирования правильности работы дисплея, сигнальных светодиодов и электрических контактов блока PR120/K.

К многоконтактному разъему на передней панели можно подключить тестер SACE PR010/T, который позволяет тестировать и проверять функции расцепителей PR121, PR122 и PR123.

Все функции расцепителей можно полностью проверить с помощью тестирующего комплекта PR120/T, который позволяет физически вводить моделированные значения тока в расцепитель, и полностью проверяет правильность его работы. Для использования этого устройства расцепитель следует отсоединить от автоматического выключателя.

Интерфейс пользователя

Человеко-машинный интерфейс устройства состоит из широкого графического дисплея, светодиодов и кнопок управления курсором. Этот интерфейс предназначен для обеспечения максимальной простоты работы.

Можно выбрать один из пяти языков: итальянский, английский, немецкий, французский и испанский.

Как и в предыдущем поколении расцепителей, для управления режимами "Read" (Чтение) и "Edit" (Редактирование) используется система паролей. Пароль по умолчанию (0001) может быть изменен пользователем.

Параметры защитных функций (кривые и пороговые значения срабатывания) можно задать непосредственно через интерфейс устройства. Эти параметры можно изменить только тогда, когда расцепитель работает в режиме "Edit", но имеющуюся информацию и уставки параметров можно проверить в любое время в режиме "Read".

Когда подключён блок связи (внутренние модули PR120/D-М и PR120/D-ВТ или внешнее устройство BT030), можно задать параметры просто путём загрузки их в устройство (через сеть для PR120/D-М с помощью программного обеспечения SD-Pocket и через карманный компьютер (PDA) или ноутбук для PR120/D-ВТ и BT030). Тогда настройка может быть выполнена быстро и автоматически, без ошибок, путём передачи данных непосредственно из DocWin.

4/12 ABB SACE

Индикаторные светодиоды

Светодиоды на передней панели расцепителя используются для индикации всех предаварийных сигналов ("WARNING") и аварийных сигналов ("ALARM"). Сообщение на дисплее всегда указывает тип соответствующего события.

Примеры событий, о которых оповещает светодиод "WARNING":

- асимметрия фаз;
- предаварийный сигнал перегрузки (L1>90%);
- превышение первого порогового значения температуры (70°С);
- износ контактов превышает 80%;
- изменение направления чередования фаз (с дополнительным блоком PR120/V).

Примеры событий, о которых оповещает светодиод "ALARM":

- перегрузка (может начаться с $1,05 \times 11 < 1 < 1,3 \times 11$ в соответствии со стандартом IEC 60947-2);
- идет отсчет времени срабатывания функции L;
- идет отсчет времени срабатывания функции S;
- идет отсчет времени срабатывания функции G;
- превышение второго порогового значения температуры (85°C);
- износ контактов 100%;
- идет отсчет времени срабатывания функции защиты от обратного потока мощности (с дополнительным блоком PR120/V).

Устройство регистрации данных

PR122/P, а также и PR123, оснащен устройством регистрации данных, которое автоматически записывает в большой буфер мгновенные значения всех токов и напряжений.

Данные можно легко загрузить из расцепителя с помощью приложений SD-Pocket или TestBus2 через порт Bluetooth и передать на любой персональный компьютер для обработки. Когда происходит срабатывание, функция регистрации данных останавливает запись, так что можно легко выполнить подробный анализ аварийных ситуаций. SD-Pocket и TestBus2 также позволяют считывать и загружать любую иную информацию о срабатывании.

- Число каналов: 8.
- Максимальная частота выборки: 4800 Гц.
- Максимальное время выборки: 27 с (при частоте выборки 600 Гц).
- Отслеживание 64 событий.

Информация о срабатывании и данные размыкания

Когда происходит срабатывание, PR122/P и PR123/P сохраняют всю необходимую информацию:

- сработавшая защита;
- данные при размыкании (ток);
- метка времени (сохраняется при питании от вспомогательного источника, или от сети, но если питание отсутствовало не более 48 часов).

При нажатии на кнопку "info/Test" расцепитель отображает все эти данные на дисплее. Нет необходимости во вспомогательном источнике питания. Информация доступна пользователю в течение 48 часов при разомкнутом автоматическом выключателе или отсутствии тока.

В памяти хранится информация о последних 20 срабатываниях.

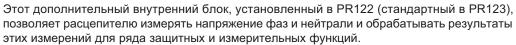
Если информацию нужно извлечь по истечении 48 часов, то достаточно подсоединить блок PR130/B или устройство беспроводной связи BT030.

Управление нагрузкой

Управление нагрузкой позволяет подключать и отключать отдельные нагрузки до срабатывания защиты от перегрузки L, избегая тем самым ненужных срабатываний автоматического выключателя на стороне питания. Это делается с помощью контакторов или выключателейразъединителей (внешне соединённых с расцепителем), управляемых устройством PR122 через внутренние контакты PR120/K, или PR021/K.

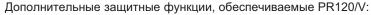
Можно реализовать две разные схемы управления нагрузкой:

- отключение двух отдельных нагрузок с разными пороговыми значениями тока;
- подключение и отключение нагрузки с гистерезисом.


Пороговые значения токов и времена срабатывания меньше тех, которые существуют для функции L , так что управление нагрузкой можно использовать для предотвращения срабатывания по перегрузке.

Для управления нагрузкой требуется внутренний блок PR120/К или внешний блок PR021/К. Эта функция работает только при наличии вспомогательного источника питания.

Расцепители защиты и кривые срабатывания PR122/P



PR120/V обычно не требует никакого внешнего соединения или трансформатора напряжения, так как он внутренне подключён к нижним выводам Етах. При необходимости снятие напряжения можно перенести в любые иные точки (т.е. верхние клеммы) с помощью альтернативного соединения, расположенного в клеммнике. Модуль снабжен пломбируемым выключателем разъединителем для диэлектрического теста. PR120/V может обеспечить питанием PR122 когда линейное входное напряжение превышает 85 В.

Для номинальных напряжений выше 690 В использование трансформаторов напряжения обязательно.

Трансформаторы напряжения должны иметь нагрузку вторичной цепи 10 ВА и класс точности 0,5 или выше.

- защита от понижения напряжения (UV);
- защита от перенапряжения (OV);
- защита от остаточного напряжения (RV);
- защита от обратной мощности (RP);
- защита от понижения частоты (UF);
- защита от повышения частоты (OF);
- последовательность фаз (только аварийный сигнал).

Все вышеперечисленные защитные функции можно отключить, хотя при необходимости можно оставить только аварийный сигнал.

При замкнутом автоматическом выключателе эти защитные функции работают также при питании расцепителя от сети. При разомкнутом автоматическом выключателе они работают при наличии вспомогательного источника питания (24 В постоянного тока или PR120/V): в этом случае расцепитель будет показывать состояние "ALARM".

Функции защиты по напряжению UV, OV, RV

Функция защиты от остаточного напряжения RV идентифицирует разрывы нейтрали (или проводника заземления в системах с заземлённой нейтралью) и аварии, которые сдвигают центр "звезды" в системах с изолированной нейтралью (например, при больших утечках на землю). Сдвиг центра звезды рассчитывается как векторная сумма напряжений фаз.

Защита от обратной мощности RP

Защита от обратной мощности особенно полезна для больших машин, таких как электродвигатели и генераторы. PR122 с блоком PR120/V может анализировать направление активной мощности и размыкать автоматический выключатель, если это направление противоположно направлению, имеющему место при нормальной работе. Пороговое значение обратной мощности и время срабатывания регулируются.

Функции защиты по частоте UF, OF

Функции защиты по частоте обнаруживают выход значения частоты сети за пределы регулируемых пороговых значений и генерируют аварийный сигнал или размыкают автоматический выключатель. Эта защита необходима, как правило, в изолированной сети, питание которой осуществляется от генератора.

4/14 ABB SACE

Функция измерения

Функция измерения тока (амперметр) реализована во всех версиях блока SACE PR122.

На экране дисплея отображаются гистограммы токов трёх фаз и нейтрали. Кроме того, в числовом формате указывается значение тока в фазе с наибольшей нагрузкой. Ток замыкания на землю отображается на специальной странице.

Величина тока замыкания на землю может иметь два различных значения в зависимости от того, используется ли внешний тороидальный трансформатор для функции защиты от замыкания на землю источника питания или внутренний трансформатор (защита от токов утечки).

Амперметр может работать либо от сети, либо от вспомогательного источника питания. В последнем случае осуществляется задняя подсветка дисплея, и амперметр включен даже тогда, когда уровень токов ниже 160 А.

Погрешность цепи измерения амперметра (датчик тока плюс амперметр) не превышает 1,5% в диапазоне токов 30% - 120% от ln.

- Токи: три фазы (L1, L2, L3), нейтраль (Ne) и замыкание на землю;
- Мгновенные значения токов в течение некоторого периода времени (функция регистрации данных);
- Техническое обслуживание: число коммутаций, процент износа контактов, хранение данных об отключении (последние 20 срабатываний и 20 событий).

Когда подключён дополнительный блок PR120/V, доступны следующие дополнительные функции измерения:

- напряжение: фаза-фаза, фаза-нейтраль и остаточное напряжение;
- мгновенные значения напряжения в течение некоторого периода времени (функция регистрации данных);
- мощность: активная, реактивная и полная;
- коэффициент мощности, cos φ;
- частота и пик-фактор;
- энергия: активная, реактивная, полная, счётчик.

Существующие исполнения

PR122/P LI-LSI-LSIG-LSIRc

Расцепители защиты и кривые срабатывания PR122/P

		Пороговое значение срабатывания	Шаг регули- ровки значе срабатываны	ния время	Шаг регули- ровки времени срабатывания	Функция отклю- чается	Зави- симость t=f(I)	Тепловая память с	і Зонная елективность
L	Защита от перегрузки	I1= 0.41 x In	0.01 x ln	t1= 3 с144 с при I = 3 x I ₁	3 c ⁽¹⁾	-	t=k/l ²	•	-
	Точность(2)	Срабатывание ме 1,05 и 1,2 х I1	ежду	± 10% lg≤4 x ln ± 20% lg>4 x ln					
	Селективная защи	та							
8	от короткого замыкания	I2= 0.610 x In	0.1 x ln	t2= 0.05 c0.8 c (2)	0.01 c	•	t=k	-	•
	Точность ⁽²⁾	± 7% lg≤ 4 x ln ± 10% lg>4 x ln		Лучшее из следующих двух значений: ± 10% или ± 40 мс					
		I2= 0.610 x In	0.1 x ln	t2= 0.05 c0.85 c	0.01 c		t=k/l ²		_
	Точность ⁽²⁾	$\pm 7\% \text{ lg} \le 4 \text{ x ln}$ $\pm 10\% \text{ lg} > 4 \text{ x ln}$		± 15% lg ≤ 4 x ln ± 20% lg > 4 x ln		•		-	
	Мгновенная защита								
	от короткого	<u> </u>		NA					
_	замыкания Точность ⁽²⁾	I3= 1.515 x In ± 10%	0.1 x ln	Мгновенное срабатывание ≤30 мс	-	•	t=k	-	_
0	Защита от замы-								
G	кания на землю	I4= 0.21 x In	0.02 x In	t4= 0.1 c1 c	0.05 c		t=k	_	
	Точность(2)	± 7%		Лучшее из следующих двух значений: ± 10% или ± 40 мс					
		I4= 0.21 x In	0.02 x In	t4= 0.1 с1 с (при I = 4	1 × 14) 0.05 c		t=k/l ²	_	
	Точность(2)	± 7%	0.02 X	± 15%	1 X 1 1 / 0.00 0	_			
Ба	Защита от								
Rc	тока утечки	Id= 0.3-0.5-0.7-1-2	-	td= 0.06-0.1-0.2-0.3- 0.4			t=k	-	_
		3-5-7-10-20-30 A		0.5-0.8-1-3-4-4.8 c (3)					
	Точность ⁽²⁾	± 10%							
<u></u>	Защита от превы-	не может быть		Мгновенное					
	шения температуры		_	срабатывание	-	-	temp=k	-	_
0	Защита от								
	перекоса фаз	I6= 5%90%	0.1 x ln	t4= 0.5 c60 c	0.5 c	•	t=k	-	-
	Точность(2)	± 10%		Лучшее из следующих двух значений: ± 20% или ± 100 мс					

- (1) Минимальное время срабатывания равно 1 с, независимо от типа заданной кривой (самозащита).
- (2) Эти значения действительны при следующих условиях:
 - расцепитель с питанием от сети на полной мощности
 - и/или с питанием от вспомогательного источника;
 - двух- или трёхфазное питание;
 - заданное время срабатывания ≥100 мс.
- (3) Время несрабатывания.

Во всех случаях, которые не упомянуты выше, применимы следующие значения точности:

	Пороговое значение срабатывания	Время срабатывания
L	Срабатывание между 1,05 и 1,25 x I1	± 20%
S	± 10%	± 20%
П	± 15%	≤60мс
G	± 15%	± 20%
Про	очие	± 20%

4/16 ABB SACE

Дополнительные функции защиты и уставки - PR122 с PR120/V										
Функция		Пороговое значение срабатывания	Шаг регули- ровки значе срабатыван	ния	спабатывания	Шаг регу- лировки времен срабатывания	-	³ Зависи- мость t=f(l)	Тепловая память сел	
①	жения напряжени	I8= 0.50.95 x Un я	0.01 x ln		I c5 c	0.1 c	•	t=k	-	•
	Точность ⁽¹⁾	± 5%			ая из двух следун ин: ± 20% или ±					
ov	Защита от перенапряжения	I9= 1.051.2 x Un	0.01 x In	t9= 0.	I c5 c	0.1 c	•	t=k	-	-
	Точность ⁽¹⁾	± 5%			ая из двух следую ин: ± 20% или ±					
RV	Защита от остаточного	I10= 0.10.4 x Un	0.05 x Un	t10= 0	.5 с30 с	0.5 c	•	t=k	-	-
	напряжения Точность ⁽¹⁾	± 5%			ая из двух следую ин: ± 10% или ±					
RP	Защита от обратной	P11= -0.30.1 x P	n0.02 x Pn	t11= 0	.5 c25 c	0.1 c	•	t=k	_	-
	мощности Точность ⁽¹⁾	± 5%			я из двух следук ин: ± 10% или ±1					
(Защита от понижения	f12= 0.900.99 x fr	0.01 x fn	t9= 0.5	5 с3 с	0.1 c	•	t=k	-	-
	частоты Точность ⁽¹⁾	± 5%		,	я из двух следую ін: ± 10% или ±1	•				
OF	Защита от повышения	f13= 1.011.10 x fr	0.01 x fn	t10= 0	.5 с3 с	0.1 c	•	t=k	-	-
	частоты Точность ⁽¹⁾	± 5%		,	я из двух следую nн: ± 10% или ±1	•				

- (1) Эти значения действительны при следующих условиях:
 - расцепитель с питанием от сети на полной мощности и/или с питанием от вспомогательного источника;
 - двух- или трёхфазное питание.

Источник питания

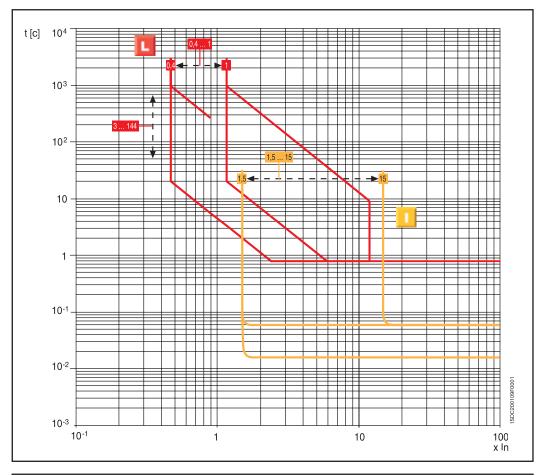
Расцепитель PR122 обычно не требует никаких внешних источников питания и питается от датчиков тока: для включения функций защиты и амперметра достаточно, чтобы хотя бы в одной фазе нагрузка была выше 100 А.

Для появления сообщений на дисплее, хотя бы в одной фазе нагрузка должна быть больше 160 A.

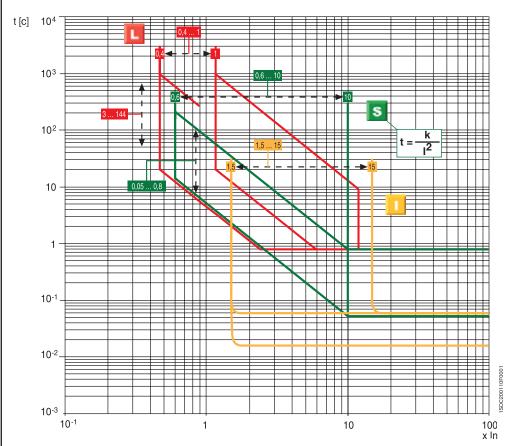
При наличии дополнительного источника питания расцепитель может работать как с разомкнутым, так и с замкнутым выключателем при очень низком токе.

Можно также использовать дополнительное питание от портативного блока PR130/B (всегда входит в комплект поставки), что позволяет устанавливать параметры защитных функций при отсутствии питания расцепителя.

PR122/P хранит и показывает после срабатывания всю необходимую информацию (сработавшая защита, ток срабатывания, время, дата). Вспомогательный источник питания для этого не требуется.

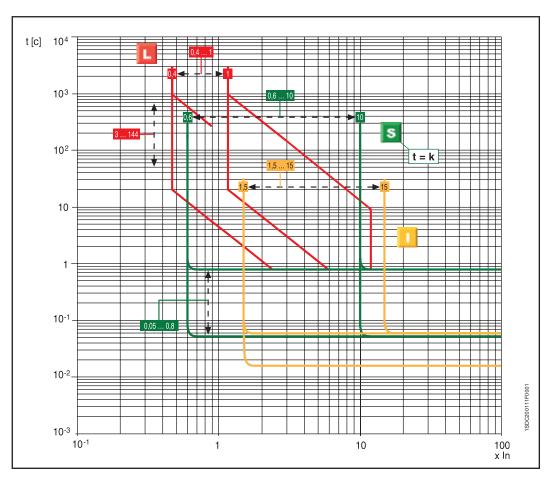

	PR122/P	PR120/D-M	PR120/K	PR120/D-BT
Вспомогательный источник питания (гальванически изолирован)	24 В пост. тока ± 20%	от PR122/PR123	от PR122/PR123	от PR122/PR123
Максимальная амплитуда пульсации	5%			
Пусковой ток при 24 В	~10 А в течение 5 мс			
Номинальная мощность при 24 Е	i ~3 Вт	+1 Вт	+1 Вт	+1 Вт

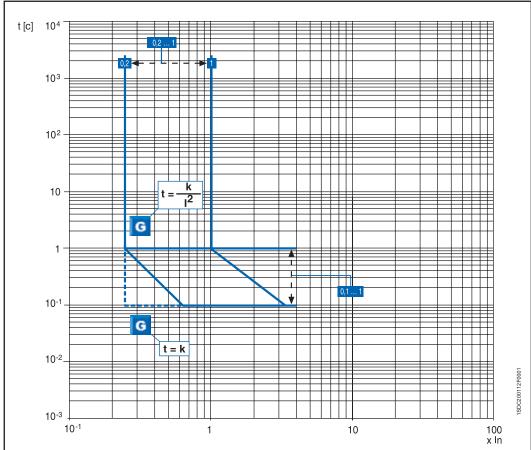
(*) PR120/V может обеспечить питание расцепителя, когда значение хотя бы одного линейного напряжения равно или больше 85 В (действ).



Расцепители защиты и кривые срабатывания PR122/P

Функции L-I

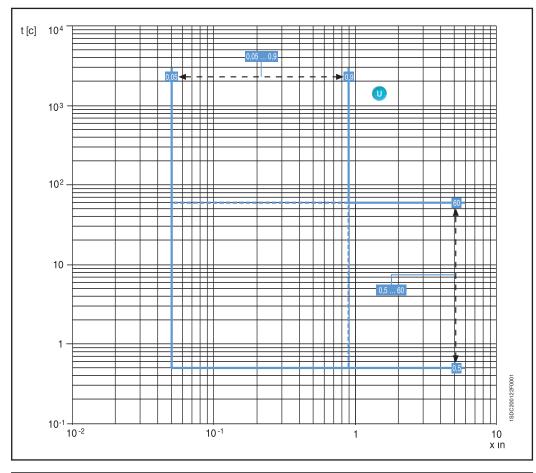

Функции L-S-I


Точность пороговых значений и времени срабатывания...стр. 4/16

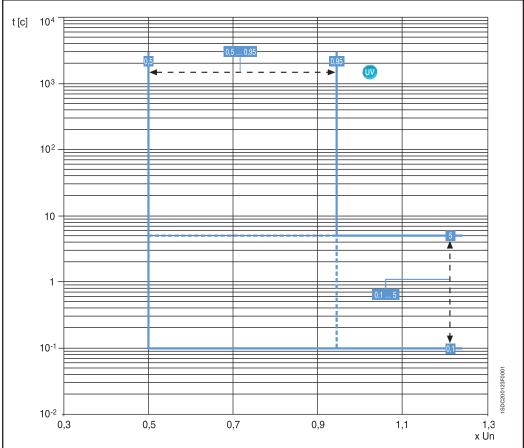
4/18

Функции L-S-I

Функция **G**

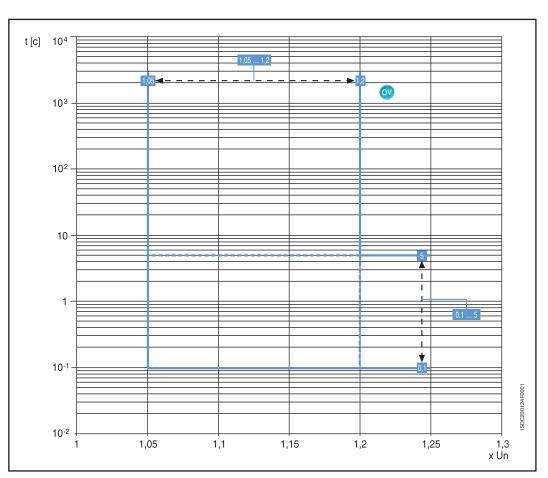


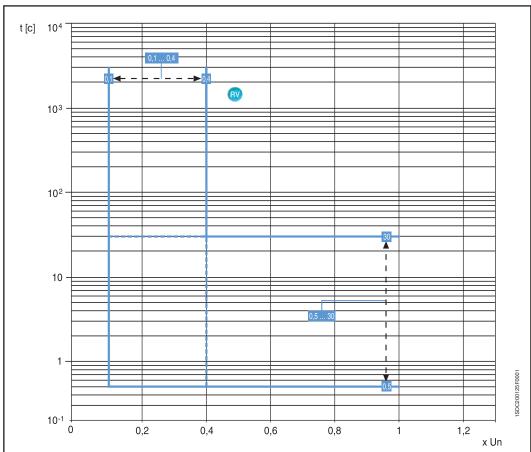
Точность пороговых значений и времени срабатывания...стр. 4/16



Расцепители защиты и кривые срабатывания PR122/P

Функция U

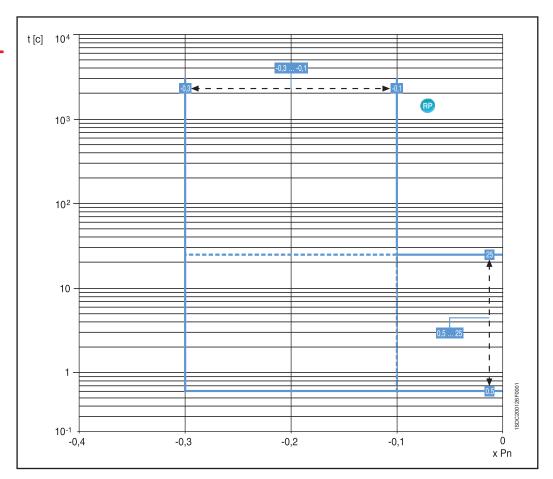

Функция UV


Точность пороговых значений и времени срабатывания...стр. 4/16

4/20 ABB SACE

Функция OV

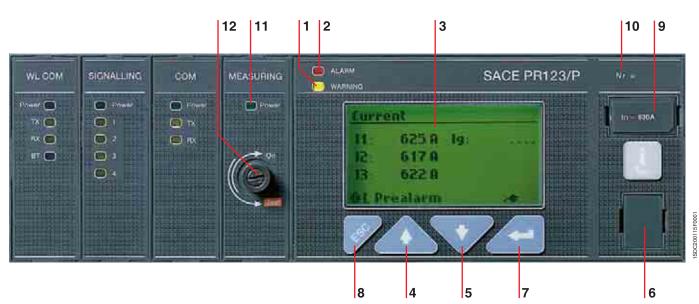
Функция RV



Точность пороговых значений и времени срабатывания...стр. 4/16

Расцепители защиты и кривые срабатывания PR122/P

Функция RP


Расцепители защиты и кривые срабатывания PR123/P

Характеристики

Расцепитель PR123 завершает серию расцепителей для серии автоматических выключателей Fmax.

Это универсальный расцепитель с высоким уровнем исполнения, предлагающий полный набор функций защиты, измерения, сигнализации, хранения данных и управления автоматическим выключателем. Он представляет собой эталон низковольтных блоков защиты для автоматических выключателей.

Фронтальный интерфейс устройства такой же, как у PR122/P, и очень прост благодаря жидкокристаллическому графическому дисплею. Он может показывать диаграммы, гистограммы, измерения и синусоидальные кривые для различных электрических параметров. PR123 имеет все функции PR122/P плюс ряд дополнительных возможностей. Как и PR122, он может быть оснащён дополнительными функциями за счёт внутренних модулей и внешних устройств.

Условные обозначения

- 1 Светодиодный индикатор "Warning" (Предупреждение)
- 2 Индикатор "Alarm" (Авария)
- 3 Графический дисплей с задней подсветкой
- 4 Кнопка перемещения курсора вверх (UP)
- 5 Кнопка перемещения курсора вниз (DOWN)
- 6 Тестовый разъем для подключения или тестирования расцепителя с помощью внешнего устройства (блок PR130/B, блок беспроводной связи ВТ030 и устройство SACE PR010/T)
- 7 Kнопка ENTER для подтверждения данных или смены страниц
- 8 Кнопка выхода из подменю или отмены операций (ESC)
- 9 Модуль номинального тока
- 10 Серийный номер расцепителя
- 11 Светодиод питания от сети
- 12 Разъединитель цепи снятия напряжения

Расцепители защиты и кривые срабатывания PR123/P

Функции защиты

Расцепитель PR123 имеет следующие функции защиты:

- защита от перегрузки (L)⁽¹⁾;
- селективная защита от короткого замыкания (S);
- мгновенная защита от короткого замыкания (I);
- защита от замыкания на землю с регулируемой задержкой (G);
- направленная защита от короткого замыкания с регулируемой задержкой (D);
- защита от асимметрии фаз (U);
- защита от превышения температуры (OT);
- управление нагрузкой (К);
- защита от понижения напряжения (UV);
- защита от перенапряжения (OV);
- защита от остаточного напряжения (RV);
- защита от обратной мощности (RP);
- защита от понижения частоты (UF);
- защита от повышения частоты (OF);
- последовательность фаз (только аварийный сигнал).

Примечание (1): согласно стандарту IEC 60255-3.

В дополнение к функциям PR122/P, существуют следующие особенности:

Защита от перегрузки L

В устройстве PR123 защита от перегрузки L включает опцию регулировки угла наклона кривой. Эта регулировка обеспечивает лучшую селективность с предохранителями или с защитой на стороне среднего напряжения.

Двойная селективная защита от короткого замыкания S

В дополнение к стандартной функции S, устройство PR123/Р имеет вторую уставку функции S с постоянным временем срабатывания (допускает отключение), что позволяет независимо задавать два пороговых значения, обеспечивая точную селективность даже в очень критических условиях.

Двойная защита от замыкания на землю G

В то время как в PR121/Р и PR122/Р пользователь должен выбирать реализацию защиты G через внутренние датчики тока (расчёт векторной суммы токов) или через внешний тороид (прямое измерение тока замыкания на землю), PR123/Р имеет функцию одновременного управления обеими конфигурациями с помощью двух независимых кривых защиты от замыкания на землю. Главная область применения этой характеристики - одновременное включение ограниченной и неограниченной защиты от замыкания на землю. Подробнее см. в главе 6.

Направленная защита от короткого замыкания с регулируемой задержкой D

Эта функция работает аналогично функции защиты S с фиксированным временем, но дополнительно может распознавать направление тока в фазах во время аварии. Направление тока позволяет определить, произошёл отказ на стороне питания или на стороне нагрузки автоматического выключателя. В кольцевых распределительных системах это позволяет определять и отсоединять сегмент системы распределения, где произошло короткое замыкание, не выключая при этом остальную часть установки. Если используется несколько расцепителей PR122 или PR123, эту защиту можно объединить с зонной селективностью.

4/24 ABB SACE

Двойные уставки защитных функций

РК123/Р может хранить альтернативный набор параметров всех защитных функций. Второй набор (набор В) может заменить, когда требуется, набор по умолчанию (набор А) по внешней команде. Эта команда обычно выдаётся при изменении конфигурации сети - например, когда подключается ряд параллельных входящих линий или когда в системе присутствует резервный источник питания, меняющий допустимую нагрузку и уровни токов короткого замыкания.

Набор В может быть активирован следующим образом: Направленную защиту от корот-

- подключение цифрового входа с помощью блока PR120/K; например, он может быть подключён к вспомогательному контакту секционного выключателя;
- связь через PR120/D-M (т.е., когда запланировано переключение);
- непосредственно из пользовательского интерфейса PR123/P;
- через регулируемый интервал времени после замыкания автоматического выключателя.

Функция зонной селективности

Примечания

кого замыкания можно отключить

на регулируемое заданное время

(t = k), её питание может осуществляться пибо от сети пибо от

вспомогательного источника пита-

Для номинала 400 А функции направленной защиты нет.

> Функция зонной селективности позволяет очень быстро изолировать зону аварии путём разъединения системы на ближайшем к отказу участке, при этом остальная часть установки продолжает работать.

> Это достигается путём соединения расцепителей: ближайший к аварии расцепитель мгновенно срабатывает, посылая блокирующий сигнал другим расцепителям, которые получили сигнал аварии.

> Функцию зонной селективности можно включить, если выбрана кривая фиксированного времени и имеется вспомогательный источник питания.

> Зонной селективностью можно пользоваться совместно с функциями S и G или, в качестве альтернативы, с функцией D.

Функции измерения

Расцепитель PR123 выполняет полный набор измерений:

- токи: три фазы (L1, L2, L3), нейтраль (Ne) и замыкание на землю;
- напряжение: фаза-фаза, фаза-нейтраль и остаточное напряжение;
- мощность: активная, реактивная и полная;
- коэффициент мощности (cos(p));
- частота и пик-фактор;
- энергия: активная, реактивная, полная, счётчик;
- расчёт гармоник: до 40-ой гармоники (форма и модуль гармоник отображаются на дисплее); до 35-ой на частоте f = 60 Гц;
- техническое обслуживание: число коммутаций, процент износа контактов, хранение данных об отключении.

Устройство PR123 может выполнять измерение некоторых величин в течение регулируемого периода времени Р, таких как: средняя активная мощность, максимальная активная мощность, максимальный ток, максимальное напряжение и минимальное напряжение. Последние 24 периода Р (регулируемой продолжительности от 5 до 120 минут) хранятся в энергонезависимой памяти и отображаются в виде гистограммы.

Прочие функции

РК123/Р имеет все функции (защиты, измерения, сигнализации и связи), описанные для PR122/P, оснащённого PR120/V.

Расцепители защиты и кривые срабатывания PR123/P

/нкці	ия	значение	Шаг регули- ровки значени срабатывания		Шаг рег времень срабать		Функция отклю- чается	Зависи- мость t=f(l)	Тепловая память с	Зонная елективнос
L	Защита от перегрузки Точность ⁽²⁾	I1= 0.41 x In Срабатывание межд 1,05 и 1,2 x I1	0.01 x ln	при I = $3 \times I_1$ t1= $3 \text{ c}144 \text{ c}$ $\pm 10\% \text{ Ig} \le 4 \times \text{In}$ $\pm 20\% \text{ Ig} > 4 \times \text{In}$		3 c ⁽¹⁾	-	t=k/l²	•	-
	Точность	I1= 0.41 x In 1.05 1.2 x I1 (согласно стандарту IEC 60	0.01 x ln	$t1= 3 \text{ c} 144 \text{ c} \text{пр} \\ \pm 20\% $	'	3 c	-			
S	Селективная защи от короткого замыкания Точность (2)	τα I2= 0.610 x ln ± 7% lg≤4 x ln ± 10% lg>4 x ln	0.1 x ln	t2= 0.05 c0.8 c Лучшее из следун двух значений: ±10% или ±40 мс		0.01c	•	t=k	-	•
	Точность ⁽²⁾	12=0.610 x In $\pm 7\% \text{ Ig} \le 4 \text{ x In}$ $\pm 10\% \text{ Ig} > 4 \text{ x In}$	0.1 x ln	t2=0.05 c 0.8 c $\pm 15\% \text{ lg} \le 4 \text{ x ln}$ $\pm 20\% \text{ lg} > 4 \text{ x ln}$		0.01c	•	t=k/l²	•	-
Sz	Селективная защитот короткого замыкания Точность (2)	та I2= 0.610 x ln ± 7% lg ≤ 4 x ln ± 10% lg > 4 x ln		t2= 0.05 с0.8 с Лучшее из следук двух значений: ±10% или ±40 мс	ощих	0.01c	•	t=k	-	•
	Точность ⁽²⁾	$12=0.610 ext{ x ln}$ $\pm 7\% ext{ lg} \le 4 ext{ x ln}$ $\pm 10\% ext{ lg} > 4 ext{ x ln}$	0.1 x ln	t2=0.05 c 0.8 c $\pm 15\% \text{ lg} \le 4 \text{ x ln}$ $\pm 20\% \text{ lg} > 4 \text{ x ln}$		0.01c	•	t=k/l²	•	-
I	Мгновенная защи от короткого замыкания Точность ⁽²⁾	ита 3= 1.515 x ln ± 10%	0.1 x ln	Мгновенное сраб ≤30 мс	атывание	_	•	t=k	_	_
G	Защита от замы- кания на землю Точность ⁽²⁾	I4= 0.21 x In ± 7%		t4= 0.1 c1 c Лучшее из следук двух значений: ±10% или ±40 мс	ощих	0.05 c	•	t=k	-	•
		14= 0.21 x ln ± 7%	0.02 x ln	± 15% или ±40 мс ± 15%	= 4 x 4	0.05 c	•	t=k/l²	-	-
RC	Защита от токов утечки Точность ⁽²⁾	Id= 0.3-0.5-0.6-1- 3-5-7-10-20-30 A ± 10%		td= 0.06-0.1-0.2-0. 0.5-0.8-1-3-4-4.8 c			•	t=k	-	-
D	Направленная защита от корот-кого замыкания Точность (2)	I7= 0.610 x In ± 10%	0.1 x ln	t7= 0.20 с0.8 с Лучшее из следун двух значений: ±10% или ±40 мс	ощих	0.01 c	•	t=k	-	•
D	Защита от асимметрии фаз Точность ⁽²⁾	I6= 10%90% ± 10%	10%	t6= 0.5 с60 с Лучшее из следук двух значений: ±20% или ±100 м	с	0.5 c	•	t=k	-	-
D	Защита от превыц ния температуры	ле- не регулируется	_	Мгновенное срабатывание		_	-	temp=k	_	-
V	Защита от пони- жения напряжени Точность ⁽²⁾	I8= 0.60.95 x Un		t8= 0.1 с5 с Лучшее из следук двух значений: ±20% или ±40 мс	ощих	0.1 c	•	t=k	_	-
V	Защита от пере- напряжения Точность ⁽²⁾	19= 1.051.2 x Un ± 5%	0.01 X 111	t9= 0.1 с5 с Лучшее из следук двух значений: ±20% или ±40 мс		0.1 c	•	t=k	-	-
RV	Защита от остаточ ного напряжения Точность ⁽²⁾	- I10= 0.10.4 x Un ± 5%	0.05 Un	t10= 0.5 с30 с Лучшее из следук двух значений: ±10% или ±100 мо	ощих	0.5 с	•	t=k	-	-
P	Защита от обратной мощности Точность ⁽²⁾	P11= -0.30.1 x P ± 10%		t11= 0.5 с25 с Лучшее из следук двух значений: ±10% или ±100 м	ощих	0.1 c	•	t=k	-	-
JF	Защита от понижения частоты Точность ⁽²⁾	f12 = 0.900.99 x f ± 5%		t9= 0.5 с3 с Лучшее из следук двух значений: ±10% или ±100 мо	•	0.1 c	•	t=k	_	-
)F	Защита от повы- шения частоты Точность ⁽²⁾	f13 = 1.011.10 x f ± 5%	n 0.01 fn	t10= 0.5 с3 с Лучшее из следук двух значений: ±10% или ±100 мо		0.1 c	•	t=k	-	-

- (1) Минимальное время срабатывания равно 1 с, независимо от типа (1) Минимальное время сраоятывания равно т с, независ заданной кривой (самозащита).
 (2) Эти значения действительны при следующих условиях:

 расцепитель с питанием от сети на полной мощности и/или с питанием от вспомогательного источника;
- двух- или трёхфазное питание;
 заданное время срабатывания ≥ 100 мс.
 (3) Время несрабатывания.

Во всех случаях, которые не упомянуты выше, применимы следующие значения точности:

	Пороговое значение срабатывания	Время срабатывания
L	между 1,05 и 1,25 x I1	± 20%
S	± 10%	± 20%
	± 15%	≤ 60мс
G	± 15%	± 20%
Пр	очие	± 20%

4/26 ABB SACE

Источник питания

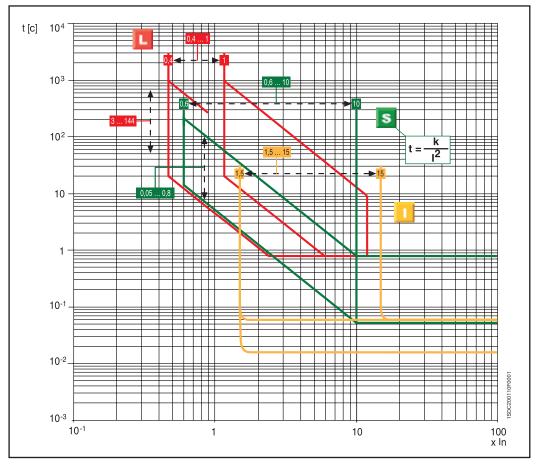
Расцепитель PR123 обычно не требует никаких внешних источников питания и питается от датчиков тока: для включения функций защиты и амперметра достаточно, чтобы хотя бы в одной фазе нагрузка была выше 100 A.

Для появления сообщения на диплее хотя бы в одной фазе нагрузка должна быть больше 160А.

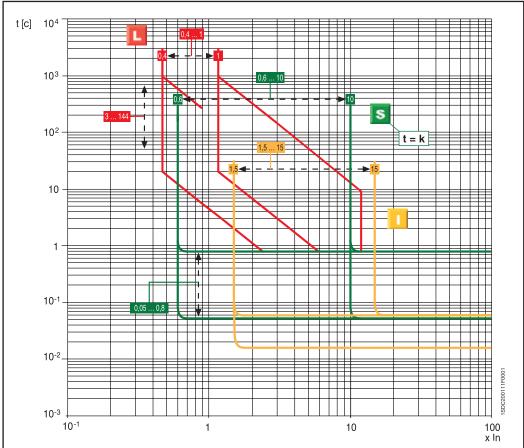
При наличии дополнительного источника питания расцепитель может работать как с разомкнутым, так и с замкнутым выключателем при очень низком токе.

Можно также использовать дополнительное питание от портативного блока PR130/B (всегда входит в комплект поставки), что позволяет устанавливать параметры защитных функций при отсутствии питания расцепителя.

PR123/Р хранит и показывает после срабатывания всю необходимую информацию (сработавшая защита, ток срабатывания, время, дата). Вспомогательный источник питания для этого не требуется.

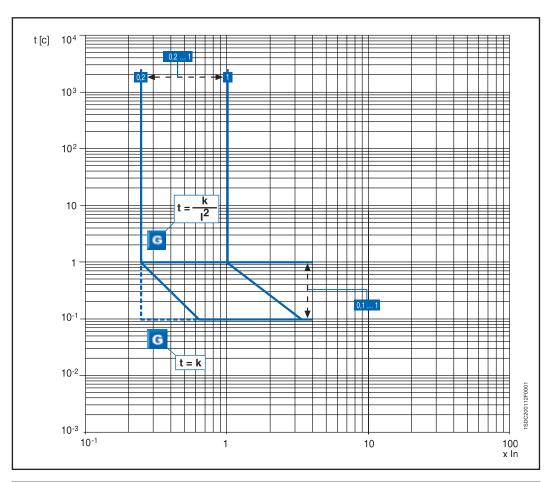

	PR123/P	PR120/D-M	PR120/K	PR120/D-BT
Вспомогательный источник питания(гальвани-чески изолирован)	24 В пост. тока ±20%	от PR122/PR123	от PR122/PR123	от PR122/PR123
Макс. амплитуда пульсации	5%			
Пусковой ток при 24 В	~10 А в течение 5 мс			
Номинальная мощность при 24	В ∼3 Вт	+1 Вт	+1 Вт	+1 Вт

(*) PR120/V может обеспечить питание расцепителя, когда значение хотя бы одного линейного напряжения равно или больше 85 В (действ.)

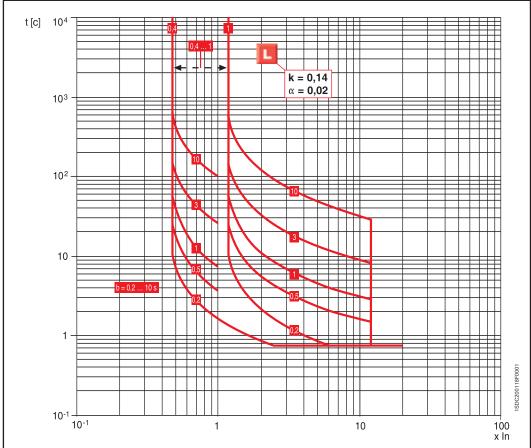


Расцепители защиты и кривые срабатывания PR123/P

Функции L-S-I


Функции L-S-I

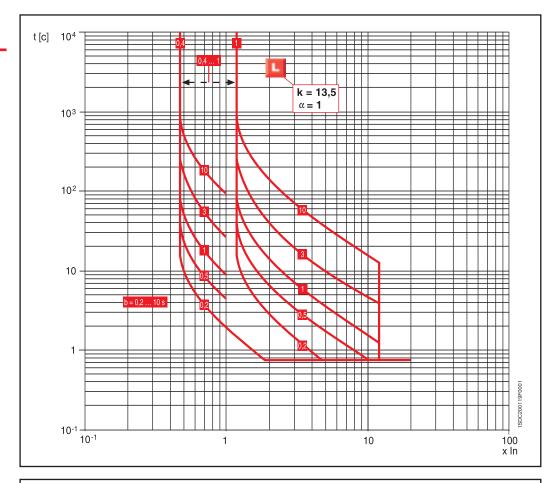
Точность пороговых значений и времени срабатывания...стр. 4/26


4/28 ABB SACE

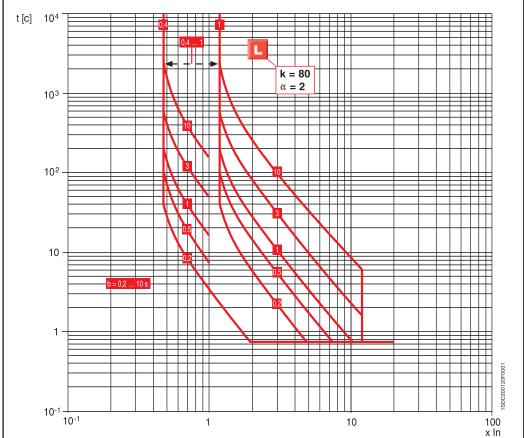
Функция G

Функция L

Согласно IEC 60225-3

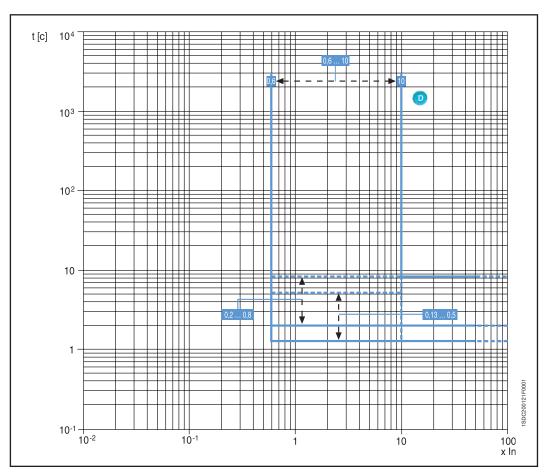

Точность пороговых значений и времени срабатывания...стр. 4/ 26

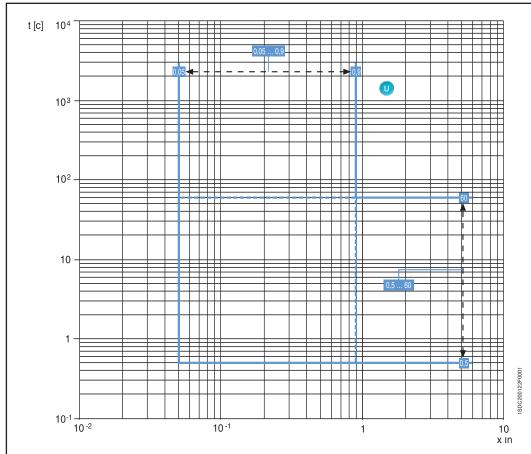
Расцепители защиты и кривые срабатывания PR123/P


Функция L

Согласно IEC 60225-3

Функция L

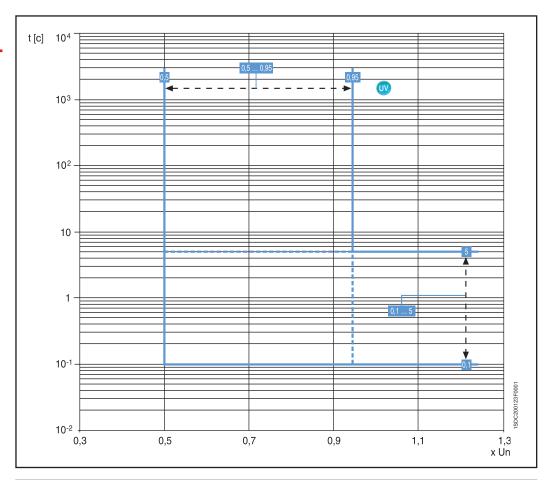

Согласно IEC 60225-3


Точность пороговых значений и времени срабатывания...стр. 4/26

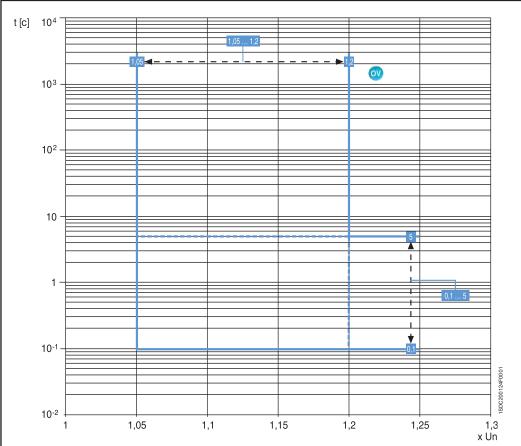
4/30 ABB SACE

Функция D

Функция U

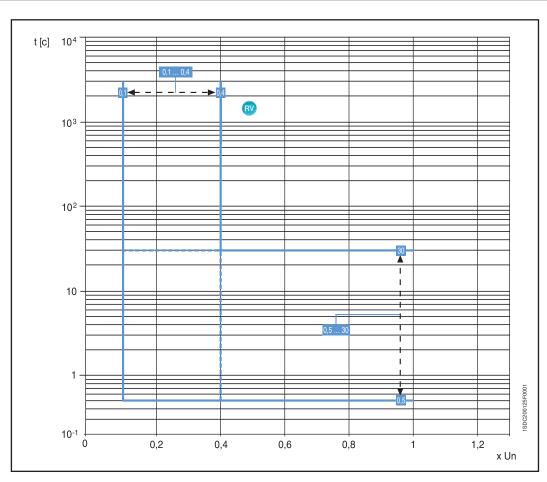


Точность пороговых значений и времени срабатывания...стр. 4/26

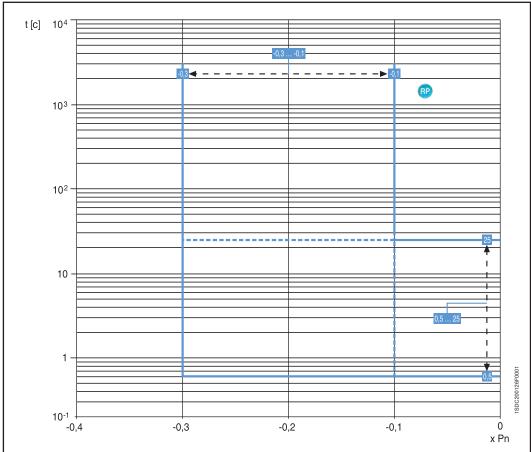


Расцепители защиты и кривые срабатывания PR123/P

Функция UV



Функция OV



Точность пороговых значений и времени срабатывания...стр. 4/26

Функция RV

Функция RP

Точность пороговых значений и времени срабатывания...стр. 4/26

Аксессуары для расцепителей защиты

Дополнительные блоки

PR122 и PR123 можно укомплектовать дополнительными внутренними блоками, которые расширяют их возможности и делают эти устройства более универсальными.

Электрические сигнальные контакты: внутренний блок PR120/K

Это устройство, подключённое к PR122/P и PR123/P, обеспечивает дистанционную передачу аварийных сигналов и сигналов срабатывания автоматического выключателя.

Четыре независимых реле на блоке PR120/К включают электрическую сигнализацию в следующих случаях:

- отсчёт времени срабатывания функций L, S, G (и UV, OV, RV, RP, D, U, OF, UF, если имеются);
- срабатывание функций L, S, I, G, OT, (и UV, OV, RV, RP, D, U, OF, UF, если имеются) и иные события;
- кроме того, с помощью внешнего устройства (PR010/T, BT030, PR120/D-BT) можно свободно задавать конфигурацию контактов в соответствии с любым возможным событием или аварийным сигналом.

PR120/К можно также использовать в качестве исполнительного блока для функции управления нагрузкой.

Также, можно использовать цифровой входной сигнал для выполнения следующих функций:

- активация альтернативного набора параметров (только для PR123/P);
- внешняя команда срабатывания;
- сброс после срабатывания расцепителя;
- сброс сигналов реле PR120/K.

Когда требуется цифровой вход, реле соединены вместе (см. принципиальные схемы в главе 8).

Если этот последний тип соединения заказывается вместе с автоматическим выключателем, это должно быть указано в заказе. При заказе PR120/K как отдельного устройства, возможны обе конфигурации.

Для устройства нужен вспомогательный источник постоянного напряжения 24 В (показан зелёным светодиодом "Power"). Четыре жёлтых светодиода показывают состояние каждого выходного реле.

Для номинальных напряжений выше 690 B обязательно использование трансформаторов напряжения.

Технические характеристики сигнальных реле					
Тип	Моностабильный двухполюсный переключатель				
Максимальная коммутируемая мощность					
(при активной нагрузке)	100 Вт / 1250 ВА				
Макс. коммутируемое напряжение	130В пост. тока /250В пер. тока				
Максимальный коммутируемый ток	5 A				
Отключающая способность (при активной	і́ нагрузке):				
при 30 В пост. тока	3.3 A				
при 250 В пост. тока	5 A				
Напряжение изоляции между контактами и обмоткой реле	2000В действ. (1 мин. при 50 Гц)				

Блок измерений PR120/V

Этот дополнительный блок можно добавить к PR122, и он входит в стандартную комплектацию PR123. Он измеряет и обрабатывает значения напряжения фаз и нейтрали и передаёт эти величины в расцепитель по своей внутренней шине, выполняя ряд защитных и измерительных функций.

Этот модуль можно в любое время подключить к PR122/P, который распознаёт его автоматически, не требуя настройки.

PR120/V обычно не требует внешнего соединения или трансформатора напряжения, так как внутри подключается к нижним клеммам Emax. При необходимости, подключение напряжения можно перенести в другие точки (т.е. верхние клеммы) с помощью альтернативного соединения, расположенного в клеммнике.

При заказе блока отдельно, PR122 поставляется со всеми возможными соединениями – как внутренними, так и через клеммник.

Блок поставляется со светодиодом Power и пломбируемым выключателем-разъединителем для испытания изоляции.

4/34 ABB SACE

Диалоговый блок PR120/D-M

PR120/DM представляет собой решение для подключения Emax к сети Modbus обеспечивающее дистанционный контроль и управление автоматическим выключателем.

Он подходит к расцепителям PR122/P и PR123/P. Как и PR120/V, этот блок можно в любое время добавить к расцепителю, и его присутствие будет автоматически обнаружено. При заказе отдельно от автоматических выключателей он поставляется в комплекте со всеми необходимыми для его монтажа комплектующими, такими как вспомогательные выключатели с готовыми кабельными соединениями и кабели для сигнализации состояния автоматического выключателя (состояние пружин, выкачен или нет).

Подробнее о соединениях см. принципиальную схему на стр. 8/8.

Перечень функций см. на стр. 4/41.

Блок поставляется с тремя светодиодами, расположенными спереди:

- светодиод Power;
- светодиоды Rx/Tx.

PR120/D-BT – новый блок беспроводной связи на основе стандарта Bluetooth. Он обеспечивает связь между расцепителями PR122/P и PR123/P и карманным компьютером (PDA) или ноутбуком с портом Bluetooth. Это устройство предназначено для использования с приложением SD-Pocket (см. ниже функции этого приложения).

Блок может запитываться от вспомогательного источника 24 В постоянного тока или от блока PR130/B.

Он поставляется с четырьмя светодиодами на передней стороне:

- светодиод Power;
- светодиоды Rx/Tx;
- светодиод Bluetooth, показывающий работу канала связи Bluetooth.

PR120/D-BT можно в любое время подключить к расцепителю.

BT030 - это устройство для подключения к тестовому разъему на PR121/P, PR122/P и PR123/P. Оно обеспечивает связь по стандарту Bluetooth между расцепителем и карманным компьютером (PDA) или ноутбуком с портом Bluetooth. BT030 можно также использовать с автоматическими выключателями Tmax, оснащёнными PR222DS/PD.

Это устройство предназначено для использования с приложением SD-Pocket.

BT030 может обеспечить питание, необходимое для него самого и расцепителя с помощью аккумуляторной (Li-ion) батареи.

Источник питания PR130/B

Этот блок всегда входит в комплект поставки расцепителей PR122 и PR123 и позволяет считывать параметры устройства и задавать их конфигурацию при любом состоянии автоматического выключателя (разомкнут-замкнут, находится в тестовой позиции или выкачен, работает от/без вспомогательного источника питания).

PR130/В также требуется для считывания данных срабатывания, если срабатывание произошло более 48 часов назад, и на расцепитель больше не подавалось питание.

Внутренняя электронная цепь питает устройство в течение 3 часов подряд только для считывания и конфигурирования данных.

Время работы уменьшается, если SACE PR130/В используется для теста на срабатывание и самотестирования.

HMI030

Это устройство подходит для всех расцепителей и предназначено для установки на передней стороне распределительного щита. Оно состоит из графического дисплея, где отображаются все измерения, аварийные сигналы и события расцепителя. Пользователь может перемещаться по измерениям с помощью навигационных кнопок, как на PR122/P и PR123/P. Благодаря высокому уровню точности, равному уровню точности расцепителей, это устройство может заменить традиционные контрольно-измерительные приборы, не нуждаясь в трансформаторах тока/напряжения. Устройству требуется только источник питания 24 В постоянного тока. Фактически, НМІО30 подключается непосредственно к расцепителю через последовательный порт.

Аксессуары для расцепителей защиты

Прибор SACE PR010/T служит для тестирования, программирования и просмотра параметров расцепителей, которыми комплектуются низковольтные воздушные автоматические выключатели SACE Emax.

В частности, он может тестировать следующие устройства:

- PR121 (все версии);
- PR122 (все версии);
- PR123 (все версии),

тогда как программирование и просмотр параметров возможны для расцепителей PR122 и PR123.

Все вышеупомянутые функции могут быть выполнены при подключении блока SACE PR010/T к многоконтактному разъему на передней панели расцепителей.

Подключение выполняется при помощи специальных интерфейсных кабелей, поставляемых вместе с блоком.

Ввод-вывод информации осуществляется при помощи сенсорной панели и многострочного алфавитно-цифрового дисплея.

Прибор также имеет два светодиода для индикации следующей информации:

- POWER-ON (ВКЛ) и STAND BY (РЕЖИМ ОЖИДАНИЯ);
- состояния заряда батареи.

Прибор может работать в двух режимах тестирования: автоматическом (для PR121, PR122 и PR123) и ручном.

Программное обеспечение блока SACE PR010/Т можно обновлять, чтобы адаптировать его к работе с новыми устройствами путем его подключения к ПК (дискета с ПО поставляется ABB SACE).

Также непосредственно в блоке можно сохранить наиболее важные результаты тестирования и передать на персональный компьютер отчёт со следующей информацией:

- тип тестируемой функции защиты;
- заданное пороговое значение;
- заданная кривая;
- тестируемая фаза;
- тестовый ток;
- расчетное время срабатывания;
- измеренное время срабатывания;
- результаты тестирования.

В памяти можно сохранить результаты 5 проведенных тестов. Загруженный в ПК отчёт позволяет создать архив выполненных тестов.

В автоматическом режиме устройство SACE PR010/T с расцепителем PR122 может тестировать следующее:

- защитные функции L, S, I;
- защитную функцию G с внутренним трансформатором;
- защитную функцию G с тороидом в центре "звезды" трансформатора;
- контроль правильности работы микропроцессора.

Устройство также может тестировать следующие функции защиты PR122, оснащённого PR120/V:

- функцию защиты от перенапряжения OV;
- функцию защиты от понижения напряжения UV;
- функцию защиты от остаточного напряжения RV;
- функцию защиты от асимметрии фаз U.

Устройство SACE PR010/Т является переносным и работает от аккумуляторных батарей и/или внешнего источника питания (всегда входит в комплект поставки) с напряжением 100-240 В переменного тока / 12 В постоянного тока.

Стандартный комплект поставки прибора SACE PR010/Т включает:

- прибор SACE PR010/Т в комплекте с аккумуляторными батареями;
- блок для тестирования SACE TT1;
- внешний блок питания 100-240 В перем. тока/12 В пост. тока с кабелем;
- кабели для подключения прибора к разъему;
- кабель для подключения прибора к ПК (кабель последовательного порта RS232);
- инструкцию по эксплуатации и дискету с прикладным программным обеспечением;
- пластмассовый кейс.

4/36 ABB SACE

Аксессуары для расцепителей защиты

Сигнальный блок SACE PR021/K

Сигнальный блок SACE PR021/К служит для преобразования цифровых сигналов с расцепителей PR121, PR122 и PR123 в электрические сигналы через нормально открытые электрические контакты (сухие).

Устройство подключается к защитному расцепителю с помощью выделенной последовательной линии, по которой передаётся вся информация о состоянии функций защиты. На основании этой информации замыкаются соответствующие контакты.

Существуют следующие сигналы и контакты:

- предаварийный сигнал перегрузки L (аварийный сигнал остаётся активным всё время, пока сохраняется перегрузка, до срабатывания расцепителя);
- отсчёт времени срабатывания и срабатывание любых защитных функций (сигналы срабатывания защитных функций остаются активными на этапе отсчёта времени срабатывания и после срабатывания расцепителя);
- срабатывание защитной функции І;
- отсчёт времени и превышение порогового значения температуры (T>85°C);
- два контакта управления нагрузкой (подключение и отключение нагрузки или отключение двух нагрузок);
- срабатывание расцепителя;
- сбой обмена данными в последовательной линии (между расцепителем и сигнальным блоком);
- асимметрия фаз.

Настройка DIP-переключателей позволяет свободно задавать в PR122-PR123 конфигурацию до семи сигнальных контактов, включая: срабатывание функции направленной защиты D, срабатывание функций защиты от понижения напряжения (UV) и перенапряжения (OV), срабатывание функции защиты от обратной мощности RP и др.

Два контакта на блоке SACE PR021/K (управление нагрузкой) могут управлять размыканием или замыканием автоматического выключателя. Эти контакты допускают различное применение, включая управление нагрузкой, аварийные сигналы, предупредительные сигналы и электрические блокировки.

Нажатие на кнопку "Reset" приводит к сбросу всех сигналов.

На блоке также имеются десять светодиодов для визуальной сигнализации следующего:

- "Power ON": наличие напряжения дополнительного источника питания;
- "TX (Int Bus)": мигает во время обмена данными по внутренней шине;
- восемь светодиодов, связанные с сигнальными контактами.

В приведённой ниже таблице перечислены характеристики сигнальных контактов блока SACE PR021/K.

Напряжение дополнительного источника питания	24 В пост. ± 20%	
Максимальная амплитуда пульсации	5%	
Номинальная мощность при 24 В	4,4 Вт	
		_

Технические характеристики сигнальных реле							
Тип	Моностабильный двухполюсный переключатель						
Максимальная коммутируемая мощность	Максимальная коммутируемая мощность						
(при активной нагрузке)	100 Вт / 1250 ВА						
Макс. коммутируемое напряжение	130В пост. тока /250В пер. тока						
Максимальный коммутируемый ток	5 A						
Отключающая способность (при активно	Отключающая способность (при активной нагрузке):						
при 30 В пост. тока	3.3 A						
при 250 В пост. тока 5 А							
Напряжение изоляции между контактами и обмоткой реле	2000В действ. (1 мин. при 50 Гц)						

Устройства и системы связи

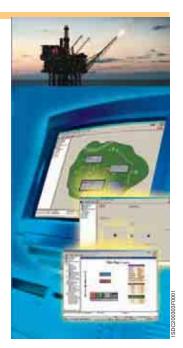
Создание промышленных сетей и ABB SACE Emax

Помимо обеспечения гибкой и безопасной защиты силовых установок, электронные расцепители ABB SACE предлагают широкий диапазон функций связи, что открывает путь для подключения автоматических выключателей к промышленным системам связи.

Электронные расцепители PR122 и PR123 можно оснастить диалоговыми блоками, что позволит обмениваться данными и информацией с другими промышленными электронными устройствами через сеть.

В качестве основного протокола связи реализован Modbus RTU - хорошо известный стандарт, широко используемый в промышленной автоматике и оборудовании по распределению энергии. Интерфейс связи Modbus RTU можно сразу подключить и обмениваться данными с широким диапазоном промышленных устройств, работающих с тем же протоколом.

В число продуктов ABB, работающих с протоколом Modbus RTU, входят:


- низковольтные автоматические выключатели, такие как Emax:
- защитные устройства среднего напряжения;
- датчики:
- автоматические системы ввода-вывода;
- измерители мощности и другие измерительные устройства;
- интеллектуальные устройства, такие как ПЛК;
- операторские интерфейсы;
- системы контроля и управления.

Если требуются другие протоколы связи, то существует, также, система ABB Fieldbus Plug: таким образом, можно сразу работать с интеллектуальными сетевыми протоколами, такими как Profibus-DP и DeviceNet.

Преимущества промышленных сетей

Сеть связи можно использовать для считывания всей информации, которая имеется в расцепителе, из любого места подключения к шине в реальном времени:

- состояние автоматического выключателя: замкнут, разомкнут, разомкнут в результате срабатывания расцепителя;
- все величины, измеряемые расцепителем: действующие значения токов, напряжения, мощность, коэффициент мощности и т.д.;
- аварийные и предаварийные сигналы от расцепителя, например, аварийный сигнал защиты от перегрузки (отсчёт времени до срабатывания или предупреждения в виде предаварийного сигнала);
- значения токов в случае размыкания автоматического выключателя при срабатывании защиты;
- количество выполненных автоматическим выключателем операций с указанием количества срабатываний каждого типа защиты (от короткого замыкания, перегрузки и т.д.);
- полный набор уставок расцепителя;
- оценка оставшегося срока службы контактов автоматического выключателя, рассчитанная на основе значений токов в момент срабатывая защиты.

Возможно дистанционное управление автоматическими выключателями: можно выдавать на автоматический выключатель и расцепитель команды размыкания, замыкания и сброса аварийных сигналов. Команды замыкания выполняются только после проверки безопасности (например, на расцепителе не должно быть активных аварийных сигналов).

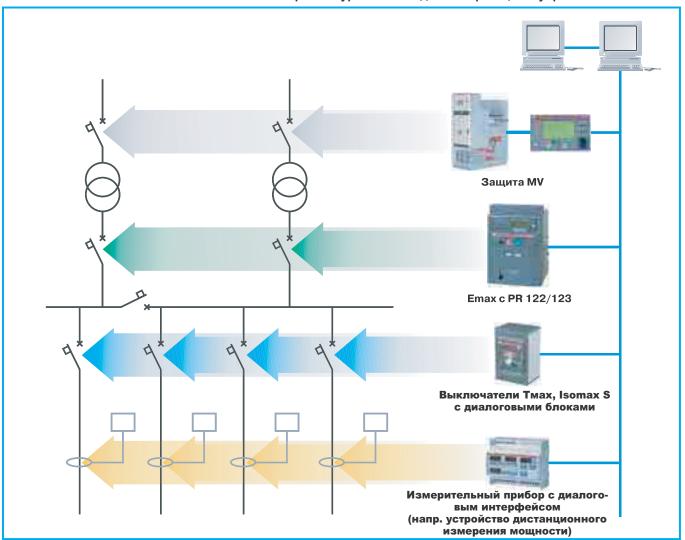
Можно дистанционно изменять уставки расцепителя с помощью шины связи.

Для обеспечения безопасности операторов и установки все дистанционные команды можно блокировать с помощью режима "локальной" конфигурации.

Автоматические выключатели с блоками связи можно легко встроить в системы автоматики и диспетчеризации. Наиболее типовые применения:

- диспетчерский контроль установки с непрерывной регистрацией данных (величина токов, напряжения, мощности) и событий (аварийных сигналов и срабатываний). Контролировать можно только низковольтные устройства, или добавить к ним оборудование среднего напряжения и, возможно, другие типы промышленных устройств;
- диагностика состояния аппаратов на основе количества коммутаций каждого автоматического выключателя, значений токов при аварийном срабатывании и оценки остаточного срока службы оборудования;
- сброс нагрузки и управление стороной потребления под контролем ПЛК, систем сбора данных или компьютеров.

Устройства связи для ABB SACE Emax


Компания АВВ разработала полную серию аксессуаров для электронных расцепителей Етах:

- диалоговый блок PR120/D-M;
- EP010 FBP.

Кроме того, создано новое поколение программного обеспечения, предназначенного для установки, настройки, контроля и управления расцепителями и автоматическими выключателями:

- SDView 2000
- SD-Pocket
- TestBus2.

Архитектура системы диспетчеризации и управления

Устройства и системы обмена данными

PR120/D-M

PR120/D-M - это новый диалоговый блок для расцепителей PR122/P и PR123/P.

Он предназначен для простого подключения автоматических выключателей Emax к сети Modbus.

В энергетике и на автоматизированном производстве широко используется протокол Modbus RTU.

Он основан на архитектуре "главное устройство - подчинённое устройство" с пропускной способностью до 19200 кбайт/с. Стандартная сеть Modbus легко монтируется и конфигурируется с помощью RS485. Расцепители ABB работают в качестве подчинённых устройств в сети.

Необходимая информация для подключения PR120/D-M к промышленной системе связи находится на интернет-странице компании ABB.

BT030

BT030 представляет собой устройство для подключения к тестовому разъему PR121/P, PR122/P и PR123/P. Оно обеспечивает связь по стандарту Bluetooth между расцепителем и карманным компьютером (PDA) или ноутбуком через порт Bluetooth.

BT030 можно использовать также с автоматическими выключателями Tmax, оснащёнными PR222DS/PD. Это устройство предназначено для работы с приложением SD-Pocket.

Оно может обеспечить вспомогательное питание расцепителя от аккумуляторных батарей.

EP 010 - FBP

EP 010 - FBP - это интерфейс Fieldbus Plug между расцепителями Emax и системой ABB Fieldbus Plug, которая обеспечивает подключение автоматических выключателей Emax к сетям Profibus, DeviceNet и AS-I.

EP 010 - FBP можно подключить к новым расцепителям Emax PR122 и PR123 (необходим блок PR120/D).

Концепция ABB Fieldbus Plug - это новейшая разработка в области промышленных систем связи.

Все устройства имеют стандартное гнездо для подключения ряда взаимозаменяемых "умных" соединителей. Каждый соединитель снабжён передовой электроникой, реализующей интерфейс связи с выбранной местной шиной.

В настоящее время доступны системы связи Profibus-DP, DeviceNet и AS-I.

В настоящее время разрабатываются и другие.

4/40 ABB SACE

Функции измерения, сигнализации и доступная информация

Подробная информация о функциях расцепителей PR122/P и PR123/P с PR120/D-M и EP010 - FBP, приведена в следующей таблице:

	PR122/P + PR120/D-M	PR123/P + PR120/D-M	PR122/P-PR123/P + PR120/D-M и EP 010
Функции обмена данными			
Протокол	Modbus RTU	Modbus RTU	FBP
Подключение	RS-485	RS-485	Кабель Profibus-DP или DeviceNet
Максимальная скорость передачи данных	19200 бит/с	19200 бит/с	115 кбит/с
Функции измерения			
Токи фаз			•
Ток нейтрали			•
Ток замыкания на землю			
Напряжение (фаза-фаза, фаза-нейтраль, остаточное)	опция (¹)		по запросу
Мощность (активная, реактивная, полная)	опция (¹)		по запросу
Коэффициент мощности (cos)	опция (¹)		по запросу
Частота и пик-фактор	опция (1)		по запросу
Энергия (активная, реактивная, полная)	опция (1)		по запросу
Анализ до 40-ой гармоники		•	по запросу
Функции сигнализации			
Светодиод: допол. источник питания, предупреждение, аварийный сигнал			
Температура			
Индикация L, S, I, G и других защитных функций	опция (¹)		•
Доступная информация			
Состояние автоматического выключателя (разомкнут, замкнут)			
Положение автоматического выключателя (установлен, выкачен)	-	-	
Режим (местный, дистанционный)		-	-
Параметры функций защиты			<u> </u>
параметры функции управления нагрузкой	-		-
Аварийные сигналы			
•	_	<u> </u>	<u>_</u>
Функция L	•	•	•
Функция S			•
Функция І			
Функция G			_
Функция Т			
Отказ механизма размыкания по аварии Защита от пониж. напряж., перенапряж. и остат. напряж. (отсчёт времени и сраба	—		
защита от пониж. напряж., перенапряж. и остат. напряж. (отсчет времени и срасс Защита от обратной мощности (отсчёт времени и срабатывание)	опция (1)		по запросу
	ОПЦИЯ(*)		по запросу только PR123
Направленная защита (отсчёт времени и срабатывание)	_		
Защита от понижения/повышения частоты (отсчёт времени и срабатыв:	ание) опция(1)		по запросу
Чередование фаз		-	по запросу
Техническое обслуживание			
Общее количество коммутаций	•	•	•
Общее количество срабатываний			
Количество тестов на срабатывание			
Количество коммутаций вручную			
Количество отдельных срабатываний для каждой функции защиты			•
Износ контактов (%) Запись данных последнего срабатывания	-	•	•
	_	-	_
Команды управления			
Размыкание/замыкание автоматического выключателя			
Сброс аварийных сигналов		-	
Задание кривых и пороговых значений функций защиты			
Синхронизация времени системы	•	•	•
События			
		-	

(¹) c PR120/V

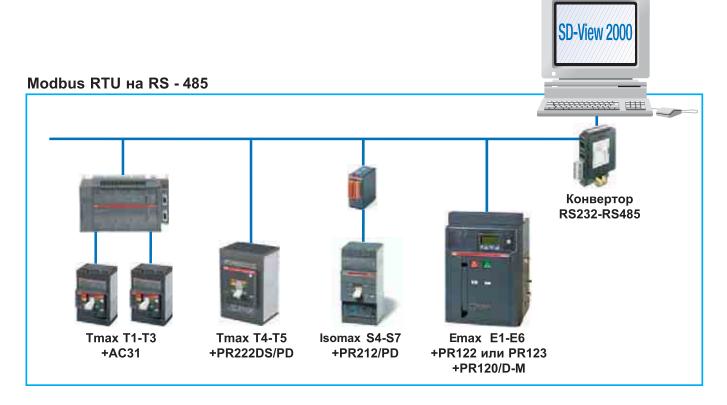
Устройства и системы обмена данными

SD - View 2000

SD- View 2000 - готовая к использованию система, состоящая из программного обеспечения для персональных компьютеров, в стандартной конфигурации, обеспечивающей полный контроль низковольтных электрических установок.

Ввести систему SACE SD-View 2000 в эксплуатацию можно легко и быстро. Программное обеспечение само направляет пользователя в ходе обнаружения и настройки устройств защиты.

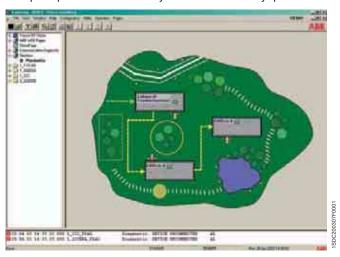
Пользователю надо знать только установку (например, сколько установлено автоматических выключателей и как они соединены друг с другом). Инженерные расчеты в системе контроля не требуются, так как для всех отображаемых в системе страниц уже заданы конфигурации и они готовы к использованию.


Использование программного обеспечения осуществляется интуитивно, и оператору легко этому научиться: SD - View 2000 имеет графические страницы на основе Internet Explorer, что делает систему столь же простой в управлении, как поиск в Интернете.

Архитектура системы

Архитектура системы основана на новейших разработках в области персональных компьютеров и технологии промышленных сетей коммуникации.

Устройства ABB SACE подключаются к последовательной шине RS485 Modbus. К шине можно подключить максимум 31 устройство. К персональному компьютеру, который работает в качестве сервера данных, считывая и сохраняя получаемые от устройств данные, можно подключить максимум 4 последовательных шины. Этот сервер также используется как операторская станция, где можно отображать и распечатывать данные, выдавать команды на устройства и выполнять все операции, необходимые для управления установкой.


Сервер можно подключить к локальной сети вместе с персональными компьютерами, которые работают как дополнительные операторские станции (клиенты). Благодаря этому, контроль и управление установкой можно надежно выполнять с любой станции, подключённой к сети, в которой установлено программное обеспечение SD - View 2000.

4/42 ABB SACE

Полное управление установкой

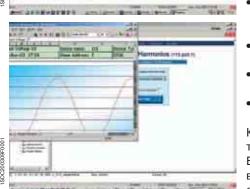
SACE SD - View 2000 является идеальным инструментом для менеджеров, позволяющим всегда контролировать состояние установок и легко управлять всеми функциями в реальном времени.

Операторская станция SACE SD - View 2000 (персон. компьютер) позволяет получать информацию с установки и управлять автоматическими выключателями и соответствующими расцепителями. В частности, можно делать следующее:

- выдавать команды размыкания и замыкания на автоматические выключатели;
- считывать величины параметров электрической установки (ток, напряжение, коэффициент мощности и т.д.);
- считывать и изменять характеристики срабатывания устройств защиты;
- определять состояние устройства (разомкнут, замкнут, количество коммутаций, срабатывание по аварии и т.д.);
- определять аномальные условия эксплуатации (например, перегрузку), а в случае срабатывания расцепителей – тип аварии (короткое замыкание, замыкание на землю, величина токов при срабатывании и т.д.);
- регистрировать параметры работы установки (потребление энергии, самая нагруженная фаза, все предупреждения об отклонениях и неисправностях и т.д.);
 - отображать изменение параметров установки во времени с помощью графиков.

Доступ к различным функциям системы может осуществляться посредством секретных кодов или паролей разного уровня авторизации.

Пользоваться системой по-настоящему легко благодаря пользовательскому интерфейсу на базе Internet Explorer. Графические страницы каждого автоматического выключателя устроены для интуитивного восприятия и легкой работы.


К SD-VIEW 2000 можно подключать следующие автоматические выключатели с электронными расцепителями:

- воздушные низковольтные автоматические выключатели Emax с E1 по E6, оснащённые расцепителями PR122/P или PR123/P с блоком Modbus RTU PR120/D-M;
- воздушные низковольтные автоматические выключатели Emax с E1 по E6, оснащённые расцепителями PR112/PD или PR113/PD Modbus;
- низковольтные автоматические выключатели Tmax T4 и T5, оснащённые расцепителем PR222/PD;
- низковольтные автоматические выключатели Isomax с S4 по S7, оснащённые расцепителем PR212/P с блоком Modbus RTU PR212/D-M.

Кроме того, SD-View 2000 может собирать в реальном времени данные измерений тока, напряжения и мощности с мультиметров MTME-485 с блоком Modbus.

Более того, можно осуществить работу SD-View 2000 с любым автоматическим выключателем или выключателем-разъединителем, не оснащённым электроникой, с помощью устройства PLC AC31 в качестве диалогового блока. Для подключённых таким образом автоматических выключателей или выключателей-разъединителей SD-View 2000 в реальном времени показывает состояние аппаратов (разомкнут, замкнут, сработал, установлен или выкачен) и позволяет дистанционно ими управлять.

Устройства и системы обмена данными

Все характеристики перечисленных устройств заданы в системе SD - View 2000. Поэтому пользователю не нужно задавать подробную конфигурацию (т.е. вставлять таблицы с данными для каждого расцепителя, или рисовать графические страницы): нужно просто ввести перечень подключённых к системе устройств.

Технические характеристики
До 4 последовательных портов
До 31 устройства ABB SACE для каждого последовательного порта
Скорость передачи данных 9600 или 19200 бод
Протокол Modbus® RTU

Требования к персональным компьютерам

Pentium 1 ГГц, 256 Мб RAM (рекомендуется 512 Мб), жёсткий диск 20 Гб, Windows 2000, Internet Explorer 6, сетевая карта Ethernet, принтер (дополнительно).

SD - Pocket

SD - Pocket -приложение, предназначенное для подключения новых расцепителей к карманному компьютеру (PDA) или персональному компьютеру. Это значит, что теперь можно использовать беспроводную связь, чтобы:

- задавать пороговые значения функций защиты;
- контролировать функции измерения, включая считывание данных, записанных в устройстве регистрации данных (PR122/PR123);
- проверять состояние автоматического выключателя (т.е. количество коммутаций, данные в момент срабатывания в зависимости от подключённого расцепителя).

В число сценариев приложения SD-Pocket входят следующие:

- быстрая и безошибочная передача параметров функций защиты на расцепители во время запуска распределительного устройства (также с использованием специального обменного файла непосредственно из Docwin);
- сбор информации о состоянии автоматического выключателя и нагрузки во время нормальной эксплуатации установки (информация о последнем срабатывании, рабочие токи и прочая информация).

Для того чтобы использовать все эти функции, достаточно иметь карманный компьютер (PDA) с MS Windows Mobile 2003 и интерфейсом BT, или персональный компьютер с MS Windows2000 OS и новые блоки PR120/D - BT или BT030 стандарта Bluetooth.

SD - Pocket - бесплатно распространяемое программное обеспечение, его можно загрузить с интернет-сайта BOL (http://bol.it.abb.com).

Для его использования не требуются устройства обмена данными расцепителей.

4/44 ABB SACE

TestBus2

TestBus2 – программное обеспечение ABB SACE для запуска и диагностики всех устройств Modbus RTU.

Его можно использовать при запуске системы или для поиска неисправностей в установленной сети.

TestBus2 автоматически сканирует шину RS-485, обнаруживает все подключённые устройства и проверяет их уставки. Проверяются все возможные комбинации адреса, чётности и скорости передачи данных устройств.

Достаточно нажать на "scan", чтобы обнаружить устройства, которые не отвечают, имеют неправильные адреса, у которых неправильно установлены разряды чётности и т.п. Эта функция не ограничена устройствами ABB SACE: обнаруживаются все стандартные устройства Modbus RTU и отображается их конфигурация.

После сканирования программное обеспечение выдаёт предупреждающие сообщения о возможных проблемах и ошибках конфигурации, позволяя выполнить полную диагностику локальной сети.

При обнаружении расцепителей ABB SACE можно использовать дополнительные функции для проверки соединений, подачи команд размыкания, замыкания, сброса и извлечения диагностической информации.

Этот удобный для пользователя инструмент упрощает ввод в эксплуатацию сетей Modbus.

TestBus2 - бесплатно распространяемое программное обеспечение, его можно загрузить с интернет - сайта BOL (http://bol.it.abb.com).

Аксессуары

Содержание

Функции аксессуаров

В приведённой ниже таблице перечислены некоторые функции, которые можно реализовать путём выбора соответствующих аксессуаров. В зависимости от варианта использования автоматического выключателя могут быть одновременно реализованы несколько из перечисленных функций Подробное описание отдельных аксессуаров приводится в последующих разделах.

Компоненты Функция Реле отключения Дистанционное управление Реле включения Мотор-редуктор для автоматического взвода включающих пружин Дополнительные контакты для сигнализации состояния автоматического выключателя - разомкнут-замкнут автоматического выключателя - разомкнут-замкнут Дополнительные контакты для сигнализации положения автоматического выключателя - установлен, выкачен для тестирования, выкачен (только для выкатных автоматических выключателей) Дистанционная сигнализация или автоматическая активация операций в зависимости от состояния (разомкнут-замкнутсработал) или положения (установлен, выкачен для тестирования или выкачен) автоматического выключателя Контакт для электрической сигнализации срабатывания расцепителя защиты Контакт для сигнализации отключения питания расцепителя минимального напряжения Контакт для сигнализации взведенного состояния пружин Дистанционное отключение в различных случаях, включая: - ручное аварийное управление; Реле отключения или реле - отключение в зависимости от срабатывания других минимального напряжения устройств либо автоматики системы(Мгновенный расцепитель минимального напряжения или с выдержкой времени⁽²⁾ Автоматическое отключение автоматического выключателя при понижении напряжения (например, при работе асинхронных Контакт для сигнализации включения питания расцепителя двигателей) минимального напряжения Повышение степени защиты Защитная крышка для двери (ІР54) Замок с ключом для фиксации выключателя в отключенном положении Механические блокировки для обеспечения требований Устройство для навесного замка для фиксации эксплуатации по взаимной блокировке двух или более выключателя в отключенном положении автоматических выключателей Замок и блокировочное устройство в положениях <mark>"установлен/выкачен для тестирования/выкачен"</mark> • Механическая блокировка двух или трех автоматических выключателей Автоматическое переключение источников питания Устройство ввода резерва ATS010

- (1) Примеры:
 - автоматические выключатели на низковольтной стороне параллельных трансформаторов, которые должны автоматически отключаться при размыкании устройства на стороне среднего напряжения;
 - автоматическое отключение по сигналу внешнего реле (минимального, диф.токов и т.д.)
- (2) Для предотвращения (по функциональным причинам или по соображениям безопасности) нежелательного срабатывания при временном падении напряжения рекомендуется использовать устройство задержки по времени.

5/2 ABB SACE

Аксессуары, входящие в стандартный комплект поставки

Следующие стандартные аксессуары поставляются в зависимости от версии автоматического выключателя:

Стационарный автоматический выключатель:

- фланец для двери распределительного щита (IP30);
- держатель для дополнительных расцепителей;
- четыре дополнительных контакта для сигнализации выключателя разомкнут/замкнут (только для автоматических выключателей);
- клеммник для подключения вторичных цепей;
- механическая сигнализация срабатывания расцепителя;
- горизонтальные выводы для подключения сзади;
- пластина для подъёма.

Выкатной автоматический выключатель:

- фланец для двери распределительного щита:
- держатель для дополнительных расцепителей;
- четыре дополнительных контакта для сигнализации выключателя разомкнут/замкнут (только для автоматических выключателей);
- скользящие контакты для подключения внешних цепей;
- механическая сигнализация срабатывания расцепителя;
- горизонтальные выводы для подключения сзади;
- устройство для блокирования установки автоматических выключателей с другим номинальным током;
- рукоятка для выкатывания выключателя;
- пластина для подъема.

Аксессуары, поставляемые на заказ

Наименование	Автоматические выключатели				
Паименование	Автоматические выключатели				
	с полноразмерной нейтралью				
	Автоматические выключатели на				
	напряжение до 1150 В перем. тока				
Исполнение автоматического выключателя	Стационарный Выкатной				
1а) Реле отключения/включения (YO/YC)					
и второе реле отключения (YO2)					
1b) Устройство для проверки реле отключения SOR					
2a) Расцепитель минимального напряжения (YU)					
2b) Устройство задержки для расцепителя минимального напряжения (D)					
3) Мотор-редуктор для автоматического взвода включающих пружин (М)	•				
4а) Электрическая сигнализация срабатывания электронных расцепителе	й				
4b) Электрическая сигнализация срабатывания электронных расцепителей с дистанционным сбросом					
5а) Электрическая сигнализация откп/вкл состояния автоматического выключателя (1)					
b) Внешняя дополнительная электрическая сигнализация откл/вкл состояния автоматического выключателя					
5c) Электрическая сигнализация положения автоматического выключателя - установлен/выкачен для тестирования/выкачен	•				
5d) Контакт для сигнализации взведенного состояния включающих пружин					
5е) Контакт сигнализации отключения питания расцепителя мин. напряжения (С. А	ux YU)				
6а) Трансформатор тока для внешнего проводника нейтрали					
6b) Униполярный тороид для проводника заземления основного источника питания (центр "звезды" трансформатора)					
7) Механический счетчик коммутаций					
8а) Блокировка в разомкнутом положении: ключ					
8b) Блокировка в разомкнутом положении: навесные замки					
8c) Блокировка автоматического выключателя в положениях установлен/ выкачен/выкачен для тестирования					
3d) Аксессуары для блокировки выключателя в положениях выкачен/ выкачен для тестирования					
Ве) Аксессуары для блокировки шторки навесным замком					
3f) Механический замок двери ■ ■					
9а) Защитная накладка кнопок включения и отключения					
9b) Защитная крышка для двери (IP54)					
10) Взаимная блокировка автоматических выключателей (2)					
11) Устройство автоматического ввода резерва - ATS010 (3)					

ОБОЗНАЧЕНИЯ

- Поставляемый на заказ аксессуар для фиксированного или съемной части выкатного выключателя
- Поставляемый на заказ аксессуар для фиксированной части выкатного выключателя
- Поставляемый на заказ аксессуар для съемной части выкатного выключателя

5/4 ABB SACE

	Выключатели-разъединители Выключатели-разъединители на напряжение до 1150 В перем. тока				Выкатной заземлитель		
Ī			Выкатной разъединитель	Заземляющий разъединитель с включающей способностью			
	Выключатели-разт напряжение до 10	ьединители на 00 В пост. тока	(CS)	(MPT)	(MT)		
-	Стационарный	Выкатной	Выкатной	Выкатной	Выкатной		
			■ (YC)				
		-		-			
		_		•			
	_						
		-		-			
	•	•		•			
				•			
		-					
	-						
	-						
			•	•			
					•		
			•	•	•		
		-					
	•	-					

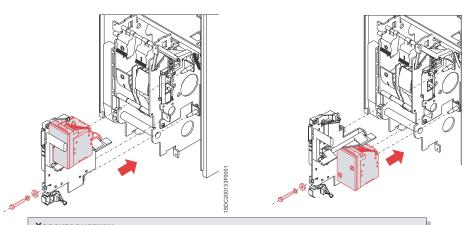
⁽¹⁾ Четыре дополнительных контакта для электрической сигнализации состояния выключателя - разомкнут/замкнут - входят в стандартный комплект поставки автоматических выключателей.

5/5 ABB SACE

 ⁽²⁾ Не совместим с версиями Е6/f с полноразмерной нейтралью
 (3) Не совместим с серией автоматических выключателей на напряжение до 1150 В переменного тока.

Дополнительные расцепители

1а) Реле отключения, включения (YO/YC) и второе реле отключения (YO2)


Позволяет дистанционно отключать или включать выключатель в зависимости от места установки и подключения реле на держателе. Реле можно использовать для выполнения любой из этих операций. Учитывая характеристики механизма управления автоматического выключателя, отключение (при замкнутом автоматическом выключателе) возможно всегда, в то время как включение возможно только при взведённых включающих пружинах. Реле может работать от постоянного или переменного тока. Оно обеспечивает мгновенное срабатывание (1), но может долгое время находиться под напряжением (2) Для некоторых установок требуются условия повышенной безопасности при дистанционном. управлении размыканием автоматического выключателя. В частности, цепи управления и реле отключения должны быть продублированы. Для выполнения этих требований автоматические выключатели SACE Emax могут быть оснащены вторым реле отключения со специальным держателем для его крепления, в котором могут разместиться стандартные реле включения и отключения. Место второго реле отключения такое же, как и для расцепителя минимального напряжения, который, поэтому, не совместим с установкой этого типа. Вместо стандартного держателя устанавливается специальный держатель, включая место для установки второго реле отключения. Технические характеристики второго реле отключения остаются идентичными техническим характеристикам стандартного реле. При использовании реле включения с постоянно подаваемым на него напряжением питания необходимо кратковременно отключить питание реле включения чтобы снова включить автоматический выключатель после отключения (механизм управления автоматического выключателя имеет устройство защиты от повторного включения).

- (1) Минимальная длительность импульса тока в мгновенном режиме должна быть равна 100 мс.
- (2) Если реле отключения постоянно подключено к источнику питания, то до подачи команды на реле включения следует подождать не менее 30 мс.

Обозначения на электрических схемах: YO (4-5) - YC (2-3) - YO2 (8)

	7	
Характеристики		
Напряжение питания (Un):	24 В пост. тока	120-127 В пер./пост. тока
	30 В пер./пост. тока	220-240 В пер./пост. тока
	48 В пер./пост. тока	240-250 В пер./пост. тока
	60 В пер./пост. тока	380-400 В перем. тока
	110-120 В пер./пост. тока	440 В переменного тока
Рабочий диапазон напряжения питания:	(YO-YO2): 70% - 110% Un	
(по стандарту IEC EN 60947-2)	(YC): 85% - 110% Un	
Пиковая мощность (Ps):	постоянный ток = 200 Вт	
Длительность импульса ~100 мс	переменный ток = 200 ВА	
Постоянная мощность (Рс):	постоянный ток = 5 Вт	
	переменный ток = 5 ВА	
Время отключения (YO- YO2):	(макс.) 60 мс	
Время включения (YC):	(макс.) 80 мс	
Напряжение изоляции:	2500 В при 50 Гц (в течени	е 1 мин.)

5/6 ABB SACE

1b) Устройство для проверки реле отключения (SOR)

Тестирующее устройство контроля SOR помогает обеспечить безотказную работу различных версий реле отключения SACE Етах, чтобы гарантировать высокий уровень надёжности при управлении размыканием автоматического выключателя. В особо сложных условиях эксплуатации и просто для дистанционного управления автоматическим выключателем SACE Етах в качестве аксессуара широко применяется реле отключения. Работоспособность реле является необходимым условием обеспечения высокого уровня безопасности установки, поэтому необходимо иметь устройство, которое периодически проверяет работу реле и сигнализирует обо всех неисправностях.

Устройство SOR позволяет контролировать целостность цепи реле отключения с номинальным рабочим напряжением 24 - 250 В (переменного и постоянного тока).

Целостность проверяется циклически, с интервалом между проверками 20 сек.

С помощью расположенных на передней стороне светодиодов устройство может подавать оптические сигналы со следующей информацией:

- POWER ON: питание включено;
- YO TESTING: идёт тестирование;
- TEST FAILED: сигнал о неудачном тестировании или пропадании вспомогательного питания;
- ALARM: сигнал, подаваемый после трёх неудачных тестов.

В блоке установлены два реле с одним переключающим контактом, которые обеспечивают дистанционную сигнализацию следующих событий:

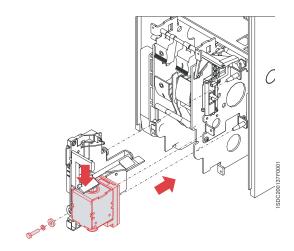
- неудачный тест: сброс происходит автоматически после исчезновения аварийного сигнала;
- три неудачных теста: сброс происходит только вручную нажатием кнопки RESET на передней панели блока.

Характеристики	
Напряжение вспомогательного питания	24 V 250 В переменного/ постоянного тока
Максимальный коммутируемый ток	6 A
Максимальное коммутируемое напряжение	250 В переменного тока

Расцепитель минимального напряжения

2a) Расцепитель минимального напряжения (YU)

Расцепитель минимального напряжения размыкает автоматический выключатель при значительном падении или пропадании напряжения питания. Его можно использовать для дистанционного отключения (с помощью нормально замкнутых кнопок), для блокировки замыкания или для контроля напряжения в первичных и вторичных цепях. Расцепитель поэтому может питаться со стороны питания автоматического выключателя или от независимого источника. Автоматический выключатель можно замкнуть только при запитанном расцепителе (блокировка включения осуществляется механически).


Расцепитель может работать на постоянном или переменном токе. Автоматический выключатель размыкается при понижении напряжения питания расцепителя до 35-70% от Un.

Автоматический выключатель может быть включен при напряжении питания расцепителя, равном 85-110% от Un.

Его можно снабдить контактом для сигнализации о подаче напряжения питания на расцепитель минимального напряжения (С. aux YU) (см. аксессуар 5d).

Обозначения на электрических схемах: YU (6)

Характеристики		
Напряжение питания (Un):	24 В пост. тока	120-127 В пер./пост. тока
	30 В пер./пост. тока	220-240 В пер./пост. тока
	48 В пер./пост. тока	240-250 В пер./пост. тока
	60 В пер./пост. тока	380-400 В пер. тока
	110-120 В пер./пост. тока	440 В пер. тока
Рабочий диапазон напряжения питания: по стандарту CEI EN 60947-2		
Пиковая мощность (PS):	постоянный ток = 200 Вт	
	переменный ток = 200 ВА	
Постоянная мощность (Рс):	постоянный ток = 5 Вт	
	переменный ток = 5 ВА	
Время отключения (YU):	30 мс	
Напряжение изоляции:	2500 В при 50 Гц (в течени	ле 1 мин.)

5/8 ABB SACE

2b) Устройство задержки срабатывания для расцепителя минимального напряжения (D)

Расцепитель минимального напряжения можно комбинировать с электронным устройством задержки срабатывания для установки вне автоматического выключателя, что обеспечивает срабатывание расцепителя с регулируемой заданной задержкой.

Использование задержки срабатывания расцепителя минимального напряжения рекомендуется для предотвращения срабатывания при кратковременных падениях или пропадании напряжения питания.

Включение автоматического выключателя блокируется, если расцепитель обесточен.

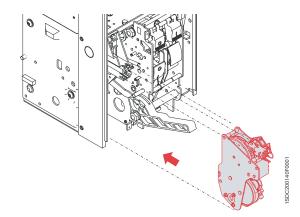
Устройство задержки срабатывания следует использовать с расцепителем минимального напряжения с тем же самым напряжением питания.

Обозначения на электрических схемах: YU+D (7).

24-30 В постоянного тока	
48 В пер./пост. тока	
60 В пер./пост. тока	
110-127 В пер./пост. тока	
220-250 В пер./пост. тока	
Регулируемое время срабатывания (YU+D): 0.5-1-1.5-2-3 c	

Мотор-редуктор для автоматического взвода включающих пружин

3) Мотор-редуктор для автоматического взвода включающих пружин (M)


Обеспечивает автоматический взвод включающих пружин механизма управления автоматического выключателя. После включения автоматического выключателя мотор-редуктор сразу снова взводит включающие пружины.

Включающие пружины могут взводиться вручную (с помощью соответствующего рычага механизма управления) в случае пропадания напряжения питания или во время технического обслуживания.

Мотор-редуктор всегда поставляется в комплекте с концевым контактом и микропереключателем для сигнализации взведенного состояния включающих пружин (см. аксессуар 5с).

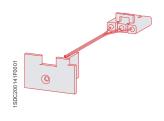
Обозначения на электрических схемах: М (1).

Характеристики		
Напряжение питания	24-30 В пер./пост. тока	
	48-60 В пер./пост. тока	
	100-130 В пер./пост. тока	
	220-250 В пер./пост. тока	
Рабочий диапазон напряжения питания:	85% - 110% Un (по стандартам CEI EN 60947-2)	
Пиковая мощность (Ps):	постоянный ток = 500 Вт	
	переменный ток = 500 ВА	
Номинальная мощность (Pn):	постоянный ток = 200 Вт	
	переменный ток = 200 ВА	
Длительность импульса	0.2 c	
Время взвода:	4-5 c	
Напряжение изоляции:	2500 В при 50 Гц (в течение 1 мин.)	

5/10 ABB SACE

Сигнализация срабатывания расцепителя

4) Электрическая сигнализация срабатывания расцепителя


Срабатывание расцепителя сопровождается следующей сигнализацией:

4а) Электрическая сигнализация срабатывания расцепителя

Обеспечивает визуальную сигнализацию на самом выключателе (механическая) и дистанционную сигнализацию (электрическая, с помощью перекидного контакта) отключения автоматического выключателя в результате срабатывания расцепителя.

Для сброса выключателя необходимо нажать на кнопку механической сигнализации.

Обозначения на электрических схемах: S51 (13).

4b) Электрическая сигнализация срабатывания расцепителя с дистанционным сбросом

Обеспечивает визуальную сигнализацию на самом выключателе (механическая) и дистанционную сигнализацию (электрическая, с помощью перекидного контакта) отключения автоматического выключателя в результате срабатывания расцепителя. При наличии этого аксессуара можно сбросить механическую сигнализацию через электрическую катушку дистанционно, что является сбросом автоматического выключателя.

Обозначения на электрических схемах: S51 (14).

Существующие исполнения

24-30 В пер./пост. тока 220-240 В пер./пост. тока 110-130 В пер./пост. тока

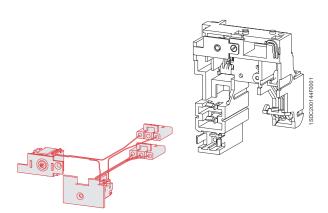


ABB SACE 5/11

Дополнительные контакты

5) Дополнительные контакты

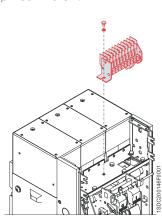
На автоматическом выключателе установлены дополнительные контакты, позволяющие сигнализировать о состоянии автоматического выключателя. Также имеются специальные дополнительные контакты на номинальное напряжение Un < 24 В (цифровые сигналы).

Характеристики		
Un	In max	T
125 В постоянного тока	0.3 A	10 мс
250 В постоянного тока	0.15 A	
Un	In max	cosφ
250 В переменного тока	5 A	0,3

Существуют следующие исполнения:

5a-5b) Электрическая сигнализация включения /отключения автоматического выключателя

Возможна электрическая сигнализация состояния (включен/отключен) автоматического выключателя с использованием 4, 10 или 15 дополнительных контактов.


Существуют следующие конфигурации дополнительных контактов:

- 4 перекидных контакта для PR121 (2 н.о. + 2 н.з.);
- 4 перекидных контакта для PR122/PR123 (2 н.о. + 2 н.з. + 2 контакта расцепителя);
- 10 перекидных контактов для PR121 (5 н.о. + 5 н.з.);
- 10 перекидных контактов для PR122/PR123 5 н.о. + 5 н.з. +2 контакта расцепителя);
- 15 дополнительных перекидных контактов для установки вне автоматического выключателя.

Пользователь может изменить описанную выше исходную конфигурацию для индикации нормально замкнутого или нормально разомкнутого состояния путём установки клеммы на микропереключателе. Когда для PR122/PR123 требуются 10 перекидных контактов, зонная селективность и устройство PR120/K не могут использоваться.

Обозначения на электрических схемах:

Q/1÷10 (21-22).

5c) Электрическая сигнализация положения автоматического выключателя - установлен /выкачен для тестирования/выкачен

В дополнение к механической сигнализации положения автоматического выключателя, также, возможно использовать установленные на фиксированной части 5 или 10 дополнительных контактов для электрической сигнализации (только для выкатных автоматических выключателей).

Дополнительные контакты имеют следующие конфигурации:

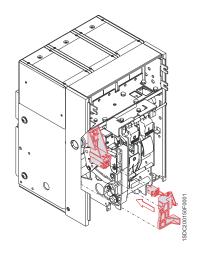
- 5 контактов: комплект состоит из 2 контактов для сигнализации положения "установлен", 2 контактов для сигнализации положения "выкачен" и 1 контакта для сигнализации положении "выкачен для тестирования" (главные контакты изолированы, а вторичные цепи подключены).
- 10 контактов: комплект состоит из 4 контактов для сигнализации положения "установлен", 4 контактов для сигнализации положения "выкачен" и 2 контактов для сигнализации положении "выкачен для тестирования" (главные контакты изолированы, а вторичные цепи подключены).

Обозначения на электрических схемах:

S751 (31-32)

S75T (31-32)

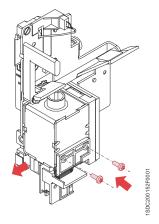
S75E (31-32)


Дополнительные контакты

5d) Контакт для сигнализации взведенного состояния включающих пружин

Содержит микропереключатель, который позволяет дистанционно сигнализировать о состоянии включающих пружин механизма управления автоматического выключателя (всегда поставляется вместе с мотор-редуктором взвода пружин).

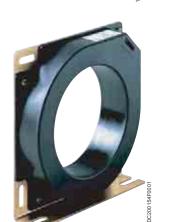
Обозначения на электрических схемах: S33 M/2 (11).



5e) Контакт сигнализации отключения питания расцепителя минимального напряжения (C.aux YU)

Обозначения на электрических схемах: (12).

5/14 ABB SACE


Трансформаторы и счётчик коммутаций

6a) Датчик тока для внешнего проводника нейтрали автоматического выключателя

Только для трёхполюсных автоматических выключателей. Обеспечивает защиту нейтрали путём подключения к расцепителю. Поставляется по запросу.

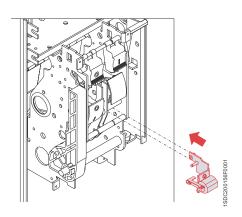
Обозначения на электрических схемах: TI/N-UI/N (51-52).

6b) Униполярный тороид для проводника заземления основного источника питания (центр "звезды" трансформатора)

Электрические расцепители SACE PR122 и PR123 могут работать с внешним тороидом, установленным на проводнике, соединяющем центр "звезды" трансформатора СН/НН с землей. В этом случае выполняется защита от замыкания на землю через источник питания. Номинальный ток In тороида может быть выбран на 100 A, 250 A, 400 A и 800 A с помощью двух пар выводов (см. главу 8). Обозначения на электрических схемах: TI/N-UI/N (51-52).

6c) Униполярный тороид для защиты от тока утечки

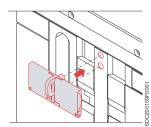
SACE PR122/P LSIRc, PR122/P LSIG (с PR120/V) и PR123/P также могут работать совместно с этим аксессуаром, обеспечивая защиту от тока утечки. Тороид поставляется с селектором в виде DIP-переключателя, устанавливаемым в соответствии с требуемой чувствительностью (до 3 А или до 30 А). Это устройство предназначено для установки на шинах и поставляется для разных номиналов: до 3200 А для 3/4-полюсных автоматических выключателей, и до 4000 А для 3-полюсных автоматических выключателей.


Характеристики Номинальный ток: 0.3 - 30A

7) Механический счётчик коммутаций

Этот счётчик подключается к механизму управления с помощью простого рычажного механизма и показывает число механических коммутаций автоматического выключателя.

Индикатор выведен на переднюю панель автоматического выключателя.

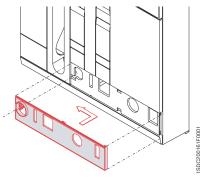

Механические замки и блокировки

8) Механические замки и блокировки

8a-8b) Замок для блокировки выключателя в отключенном состоянии

Существует несколько различных механизмов, которые позволяют блокировать автоматический выключатель в отключенном состоянии. Запирающими элементами могут быть:

- Ключ (8a): специальный цилиндрический замок с разными ключами (для одного автоматического выключателя) или с одинаковыми ключами (для нескольких автоматических выключателей). В последнем случае существует четыре группы ключей.
- Навесные замки (8b): до 3 замков (не поставляются) с диаметром дужки 4 мм.



8c) Блокировка автоматического выключателя в положениях "установлен/выкачен для тестирования/выкачен"

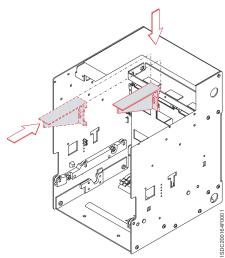
Это устройство запирается специальным цилиндрическим замком с разными ключами (для одного автоматического выключателя), с одинаковыми ключами (для нескольких автоматических выключателей; существует четыре группы ключей) и навесными замками (до 3 замков, не поставляются - диаметр дужки 4 мм).

Только для выкатных автоматических выключателей - для установки на подвижной части.

8d) Аксессуары для блокировки выключателя в положениях "выкачен для тестирования/выкачен"

Кроме блокировки автоматического выключателя в положениях "установлен/выкачен для тестирования/выкачен", это устройство позволяет блокировать автоматический выключатель только в положениях "выкачен/выкачен для тестирования".

Только для выкатных автоматических выключателей - для установки на подвижной части.

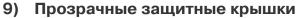

5/16

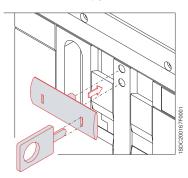
15DC2001163F0001

8е) Аксессуар для блокировки шторки


Это устройство позволяет заблокировать шторки в закрытом положении (устанавливается на фиксированной части) с помощью навесного замка

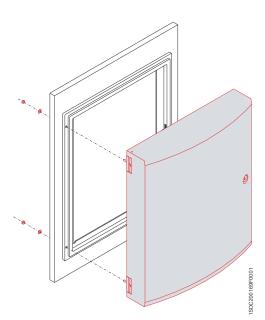
Только для выкатных автоматических выключателей - для установки на фиксированной части.


8f) Механический замок двери секции



Прозрачные защитные крышки

9а) Защитная накладка кнопок включения и отключения


Эти защитные крышки закрывают кнопки включения и отключения, не допуская переключение автоматического выключателя без использования специального инструмента.

9b) Защитная крышка для двери (IP54)

Прозрачная пластмассовая защитная крышка полностью закрывает переднюю панель автоматического выключателя и обеспечивает степень защиты IP54. Устанавливается на петлях и имеет замок.

5/18

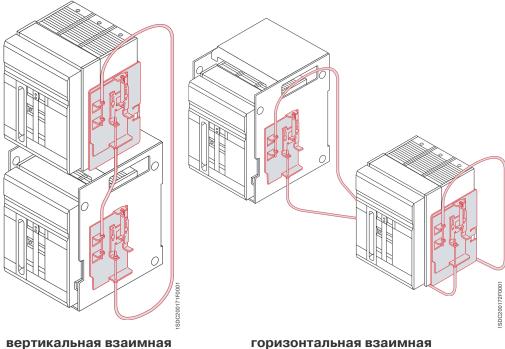
Взаимная блокировка автоматических выключателей

10) Механическая взаимная блокировка автоматических выключателей

Это устройство служит для механической взаимной блокировки между двумя или тремя автоматическими выключателями (даже между различными моделями и различными исполнениями, стационарный/выкатной) посредством гибкого тросика. Устройство механической блокировки поставляется с электрической релейной схемой для ABP.

Автоматические выключатели могут устанавливаться вертикально или горизонтально.

Существует четыре типа механических взаимных блокировок:

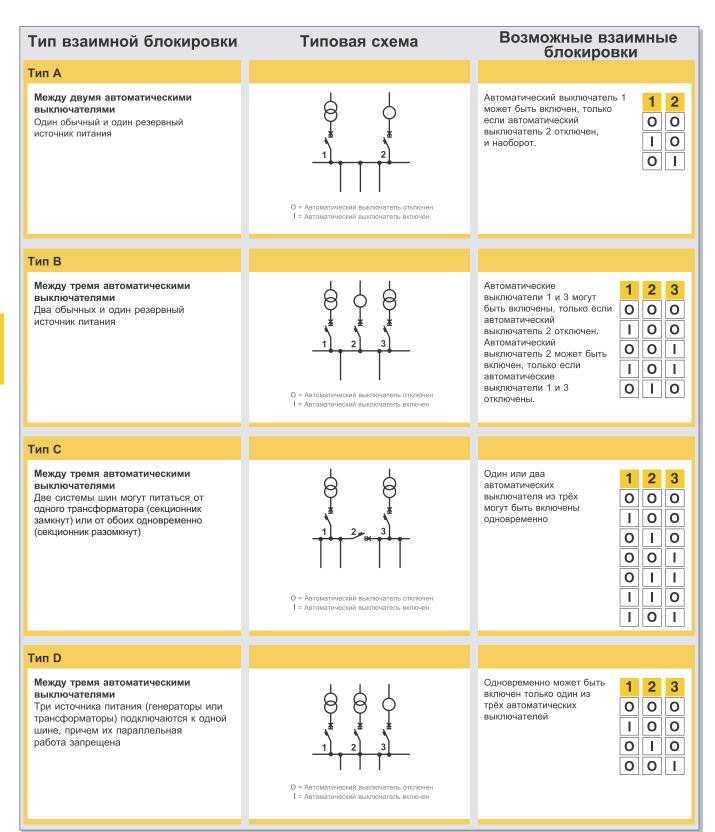

Тип А: между 2 авт. выключателями (источник пит. + резервный источник пит.).

Тип В: между 3 авт. выключателями (2 источника пит. + резервный источник пит.).

Тип С: между 3 авт. выключателями (2 источника пит. + секционник).

Тип D: между 3 авт. выключателями (3 источника пит. / включен один выключатель).

Примечание: информацию о габаритных размерах выключателей (стационарных и выкатных) и установке блокировок см. в главах "Габаритные размеры" и Электрические схемы".


блокировка

вертикальная взаимная го блокировка

Взаимная блокировка автоматических выключателей

Ниже приводятся возможные варианты механической взаимной блокировки в системе с 2 или 3 автоматическими выключателями (любой модели и любого исполнения).

Резервный источник питания обычно устанавливается для переключения питания с обычного источника питания на него в двух случаях:

- для энергоснабжения медицинских служб (например, больничного оборудования) и служб обеспечения безопасности;
- для энергоснабжения отдельных потребителей, непрерывное электропитание которых необходимо по иным причинам (например, заводы с непрерывным производственным циклом).

Аксессуары для автоматических выключателей SACE Emax позволяют выбрать оптимальное решение для широкого круга технических требований различных производств.

В случае, когда к устройствам для защиты предъявляются особые требования по надёжности и безопасности резервных цепей, необходимо руководствоваться соответствующими нормами и правилами.

Переключение с основного источника питания на резервный можно выполнять вручную (локально или дистанционно) или автоматически.

В этом случае автоматические выключатели, используемые для коммутации, должны быть оснащены аксессуарами для обеспечения электрического дистанционного управления и электрических и механических взаимных блокировок, требуемых логикой переключения. Для этого необходимы:

- реле отключения;
- реле включения;
- электродвигатель для взвода пружин;
- дополнительные контакты.

Заказчик может автоматизировать работу коммутационно-распределительного устройства, установив специальную релейную схему с электронным управлением.

Механические взаимные блокировки между двумя или тремя автоматическими выключателями выполняются посредством гибких тросиков. Они используются для автоматических выключателей, установленных как вертикально, так и горизонтально.

Устройство автоматического ввода резерва ATS010

11) Устройство автоматического ввода резерва ATS010

Это устройство разработано на основе электронной технологии, отвечающей основным стандартам электромагнитной совместимости и охраны окружающей среды (EN 50178, EN 50081-2, EN 50082-2, IEC 68-2-1, IEC 68-2-2, IEC 68-2-3).

Данное устройство может автоматически управлять всей процедурой коммутации между автоматическими выключателями на основной и резервной линиях, обеспечивая большую гибкость настройки.

В случае отклонения величины напряжения основной линии, автоматический выключатель основной линии отключается в соответствии с заданными задержками, запускается генератор и включается автоматический выключатель резервной линии.

Аналогичным образом, автоматически выполняется обратная процедура коммутации, когда восстанавливается нормальное напряжение основной линии.

ATS010 особенно подходит для использования во всех резервных системах питания, для которых требуется простота установки, легкость использования и надежность.

Некоторые основные области применения: источник энергоснабжения для систем бесперебойного питания (UPS), операционных в госпиталях и основных медицинских служб; резервный источник энергоснабжения для гражданских зданий, аэропортов, гостиниц, банков данных и телекоммуникационных систем; источник энергоснабжения для промышленных предприятий с непрерывным производственным циклом.

Коммутационная система состоит из устройства ATS010, подключённого к двум взаимно механически блокированным автоматическим выключателям с моторными приводами. Можно использовать любые автоматические выключатели серии SACE Emax. Встроенный в SACE ATS010 сетевой датчик позволяет обнаруживать сбои сетевого напряжения. Три входа можно напрямую подключить к трём фазам линии основного источника питания для сетей с номинальным напряжением до 500 В переменного тока. Для сетей с более высоким напряжением требуется использование трансформаторов напряжения и установка номинального напряжения устройства, которое совпадает с напряжением их вторичной цепи (как правило, 100 В).

Два перекидных контакта для каждого автоматического выключателя позволяют напрямую подключить их к реле включения и отключения. Подключение автоматического выключателя дополняется контактами состояния: "отключен/включен", "сработал расцепитель", "установлен" (для выкатных автоматических выключателей).

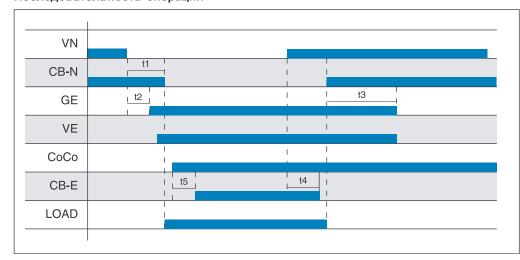
Поэтому в каждый автоматический выключатель, соединённый с устройством ATS010, кроме аксессуаров для механической взаимной блокировки, устанавливаются следующие аксессуары:

- мотор для взвода пружин;
- реле включения и отключения;
- контакт состояния автоматического выключателя "отключен/включен";
- контакт положения автоматического выключателя "установлен" (для выкатного исполнения);
- сигнализация и механическая блокировка при срабатывании расцепителя.

Конструкция устройства ATS010 обеспечивает исключительно высокую надёжность для систем, которыми оно управляет. Устройство снабжено различными системами безопасности, связанными с функционированием блока ATS010 и программного обеспечения.

Специальная логика не допускает выполнение нежелательных операций, а постоянно действующая система контроля сигнализирует о неисправностях микропроцессора с помощью светодиода на передней панели устройства.

Блок ATS010 имеет также электрическую релейную взаимную блокировку, так что нет необходимости использовать внешнюю электрическую систему взаимной блокировки. Ручной селектор на передней панели устройства также может управлять всей процедурой коммутации, даже в случае отказа микропроцессора, электромеханически переключая реле включения и отключения.


5/22 ABB SACE

Общие технические характери	стики
Номинальное напряжение питания (гальванически изолировано от земли)	24 B ± 20%, 48 B ± 10%) (макс. амплитуда пульсации ±5%)
Макс. потребляемая мощность	5 Вт при 24 В постоянного тока 10 Вт при 48 В постоянного тока
Номинальная мощность (сеть присутствует и авт. выключатели не управляются)	1,8 Вт при 24 В постоянного тока 4,5 Вт при 48 В постоянного тока
Рабочая температура	от -25°C до +70°C
Максимальная влажность	90% без конденсации
Температура хранения	от -25°C до +80°C
Степень защиты	IP54 (передняя панель)
Размеры, мм	144 x 144 x 85
Вес, [кг]	0.8

Диапазон уставок	
Минимальное напряжение Un Min	От -5% до -30% Ur
Максимальное напряжение Un Max	От +5% до +30% Ur
Фиксированные пороговые значения частоты	10% - +10% fr
t1: задержка на отключение автоматическиго выкл основной линии из-за сбоя в сети (CB-N)	ючателя 0 - 32c
t2: задержка на запуск генератора из-за сбоя в сет	и 0 - 32с
t3: задержка на остановку генератора	0 - 254c
t4: задержка на переключение в связи с восстановлением сетевого напряжения	0 - 254c
t5: задержка на включение автоматического выклк резервной линии после обнаружения напряжен генератора (СВ-Е)	очателя ия 0 - 32c

100, 115, 120, 208, 220, 230, 240, 277, Существующие установки номинального напряжения: 347, 380, 400, 415, 440, 480, 500 V

Последовательность операций

Обозначения

VΝ Напряжение сети

СВ-N Автоматический выключатель основной линии включен

GE Генератор

٧E Напряжение резервной линии

СоСо Разрешение переключения на

резервную линию

СВ-Е Автоматический выключатель

резервной линии включен

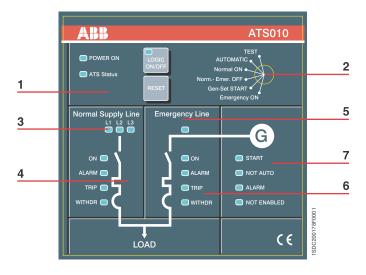
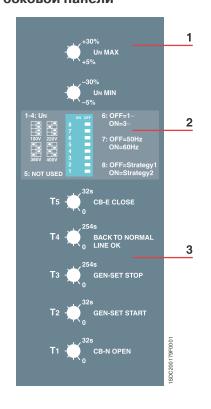

LOAD Отключение нагрузок с меньшим приоритетом

ABB SACE **5**/23

Устройство автоматического ввода резерва ATS010


Передняя панель

Обозначения

- 1 Состояние устройства ATS010 и логики
- **2** Селектор рабочего режима
- 3 Проверка основной линии
- 4 Состояние автоматического выключателя основной линии
- **5** Напряжение в резервной линии
- 6 Состояние автоматического выключателя резервной линии
- 7 Состояние генератора

Уставки на боковой панели

Обозначения

- 1 Селекторы для настройки пороговых значений минимального и максимального напряжений
- **2** DIP-переключатели для регулировки:
- номинального напряжения;
- однофазного или трёхфазного режима контроля
- частоты сети;
- стратегия управления.
- **3** Уставки времени задержки для t1... t5.

5/24 ABB SACE

Запасные части и модернизация

Запасные части

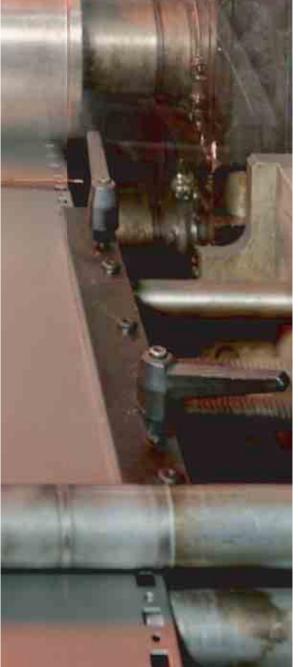
Выпускаются следующие запасные части:

- передние металлические накладки и панель с вырезами;
- электромагнит отключения для расцепителей PR121, PR122 и PR123;
- дугогасительная камера;
- включающие пружины;
- обжимной изолирующий контакт для фиксированной части выкатного автоматического выключателя;
- скользящий контакт заземления (для выключателя выкатного исполнения);
- шторки для фиксированной части;
- силовой полюс в комплекте;
- механизм управления;
- кабели для соединения расцепителей и датчиков тока;
- прозрачная защитная крышка для расцепителей;
- блок питания SACE PR130/B;
- ящик с инструментами;
- батарея для блока питания SACE PR130/B;
- передняя панель с вырезами для замка Ronis.

Дополнительную информацию можно получить, заказав каталог запасных частей компании ABB SACE.

Комплекты для модернизации

Для замены старых автоматических выключателей SACE Otomax и SACE Novomax G30 с использованием всех существующих компонентов распределительных щитов имеются специальные комплекты, в которые входят автоматические выключатели SACE Emax. Такие комплекты позволяют очень быстро выполнить замену старого оборудования на выключатели SACE Emax с использованием существующих главных соединений распределительного щита, что дает неоспоримые технические и экономические преимущества.



Применение автоматических выключателей

Согласование защиты

Селективная защита
Резервная защита
Направленная защита
Защита от замыкания на землю
Коммутация и защита трансформаторов
Защита отходящих линий
Коммутация и защита генераторов
Коммутация и защита асинхронных электродвигателей
Коммутация и защита конденсаторов

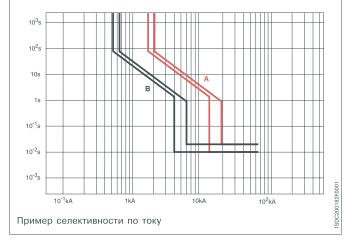
Согласование защиты

Селективная защита

Как правило, селективность используется при согласовании устройств защиты гражданских и промышленных электроустановок для изолирования от общей системы той ее части, на которую воздействует авария, за счет срабатывания только того автоматического выключателя, который защищает линию питания, на которой произошла авария. Пример, показанный на рисунке, подчеркивает необходимость координировать срабатывание между двумя автоматическими выключателями А и В таким образом, чтобы при возникновении аварии в точке С отключался только автоматический выключатель В, обеспечивая непрерывную работу остальной части системы, запитанной через автоматический выключатель А.

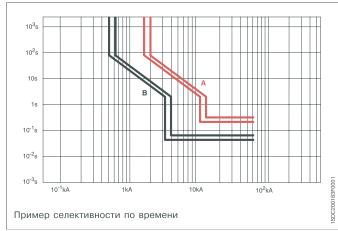
Принимая во внимание, что естественная селективность в диапазоне токов перегрузки электроустановки обычно реализуется из-за различия между номинальными токами автоматического выключателя на стороне нагрузки и главного автоматического выключателя на стороне питания, селективность можно получить и в диапазоне токов короткого замыкания за счет дифференцирования уставок по току и, при необходимости, по времени срабатывания.

Электрическая схема с селективным согласованием устройств защиты.


Селективность может быть полной или частичной:

- полная селективность: при значениях тока меньше или равных максимальному току короткого замыкания в точке С срабатывает только автоматический выключатель В;
- частичная селективность: при значениях тока короткого замыкания ниже определенного значения срабатывает только автоматический выключатель В, а при значениях тока короткого замыкания, равных или выше этого определенного значения срабатывают автоматические выключатели А и В.

В принципе, возможны следующие типы селективности:


Селективность по току

достигается путем задания различных уставок по току для функции мгновенного срабатывания (для автоматических выключателей, расположенных на стороне питания, задают более высокие уставки). Часто это обеспечивает только частичную селективность.

Селективность по времени -

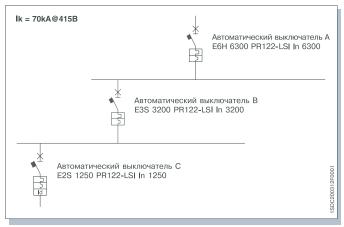
достигается путем преднамеренного увеличения временных задержек на срабатывание автоматических выключателей, расположенных ближе к источнику питания цепи.

6/2 ABB SACE

Для того чтобы гарантировать селективность для автоматических выключателей Emax, оборудованных расцепителями PR121, PR122 и PR123, необходимо убедиться в соблюдении следующих условий:

- отсутствует пересечение между кривыми "время ток" двух автоматических выключателей, включая допуски;
- минимальная разность между временем срабатывания t2 автоматического выключателя на стороне питания и временем t2 автоматического выключателя на стороне нагрузки составляет 70 мс, когда устройством, установленным на стороне нагрузки, является автоматический выключатель Emax.

При соблюдении указанных выше условий:


- если функция I включена (I3=ВКЛ.), то гарантированная селективность по максимальному току короткого замыкания равна установленному значению I3 (минус допуск);
- если функция I отключена (I3=ОТКЛ.), то максимальное значение тока короткого замыкания, для которого гарантируется селективность, должно быть равно:
- значению, указанному в Таблице на стр. 6/12, если автоматический выключатель, расположенный на стороне нагрузки, является автоматическим выключателем SACE Tmax или Isomax S;
- минимальному значению из величин lcw автоматического выключателя на стороне питания и lcu автоматического выключателя на стороне нагрузки, когда оба автоматических выключателя являются выключателями Emax.

Согласование защиты

Селективная защита

Это пример полной селективности между тремя автоматическими выключателями Етах, установленными последовательно в системе с номинальным напряжением 415 В и расчетным током короткого замыкания 70 кА.

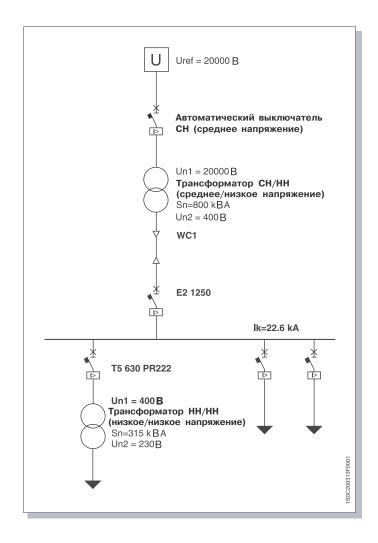
Автоматические выключатели			L		S (t=	cost)	1	
Обознач.	Тип	Іси при 415 В	lcw	l1	t1	12	t2	13
Α	E6H 63	100 kA	100 kA	1	108	10	0,25	выкл.
В	E3S 32	75 kA	75 kA	1	108	10	0,15	выкл,
С	E2S 12	85 kA	65 kA	1	108	10	0,05	выкл.

Как показано на рисунке ниже, при указанных выше уставках пересечение между кривыми "время-ток" различных автоматических выключателей отсутствует, и выполнено условие для функции S: минимальная разность задержек в 70 мс. Кроме того, исключение защиты I (I3=выкл.) гарантирует следующую селективность:

- до 75 кА между А и В;
- до 75 кА между В и С.

Таким образом, если максимальный расчетный ток короткого замыкания системы составляет 70 кА, то можно говорить о полной селективности.

6/4 ABB SACE

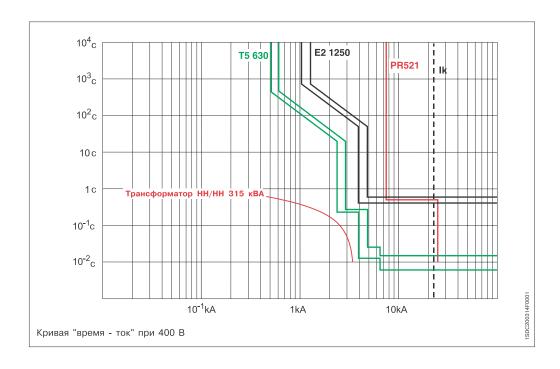

Функция защиты S с двумя пороговыми значениями

Применение нового расцепителя PR123, допускающего независимую установку и одновременную активацию двух пороговых значений функции S, обеспечивает селективность даже в очень критичных условиях.

Ниже приведен пример, как за счет использования нового расцепителя можно достичь более высокого уровня селективности по сравнению с расцепителем, не имеющим двойной защитной функции S.

Рассматривается электрическая схема; в частности, особое внимание необходимо обратить на следующее:

- наличие на стороне питания автоматического выключателя СН, который с целью обеспечения селективности заставляет устанавливать низкие значения уставок автоматического выключателя Emax, установленного на стороне НН;
- наличие трансформатора НН/НН, который из-за пиковых токов заставляет устанавливать высокие значения уставок автоматических выключателей, расположенных на стороне его первичной обмотки.



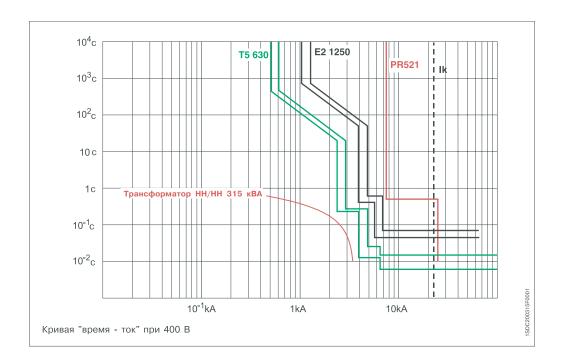
Согласование защиты

Селективная защита

Решение с использованием расцепителя без двойной функции S

 АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ

 CH (PR521)
 50 (I>): 50 A
 t=0.5c


 51 (I>>): 500 A
 t=0c

		E2N 1250 PR112 LSIG R1250	T5V 630 PR222DS/P LSIG R630
L	Уставка	0.8	0.74
	Кривая	108c	12c
S t = const	Уставка	3.5	4.2
	Кривая	0.5c	0.25c
l l	Уставка	выкл.	7

При использовании такого решения в случае короткого замыкания автоматические выключатели Emax E2 и CH отключатся одновременно. Необходимо обратить внимание на то, что из-за величины значения lk необходимо отключить функцию I автоматического выключателя E2 (I3 = OFF/BЫКЛ.), чтобы гарантировать селективность с T5 на стороне загрузки.

6/6 ABB SACE

Решение с использованием расцепителя PR123 с двойной функцией S

Автоматический CH (PR521)	выключатель
50 (l>): 50 A	t=0.5c
51 (l>>): 500 A	t=0c

		E2N 1250 PR123 LSIG R1250	T5V 630 PR222DS/P LSIG R630
L	Уставка	0.8	0.74
	Кривая	108c	12s
S t = const	Уставка	-	4.2
	Кривая	-	0.25c
S1 t = const	Уставка	3.5	-
	Кривая	0.5c	-
S2 t = const	Уставка	5	-
	Кривая	0.05c	-
I	Уставка	выкл.	7

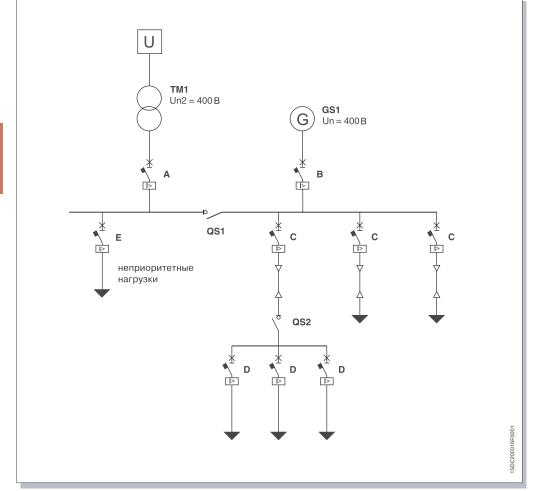
Как видно из данного примера, за счет применения двойной функции S селективность может быть достигнута как с автоматическим выключателем Т5 на стороне загрузки, так и с автоматическим выключателем СН на стороне питания. Дополнительное преимущество, которое можно получить за счет применения двойной функции S, заключается в сокращении времени протекания высоких значений тока в условиях короткого замыкания, что ведет к снижению теплового и динамического воздействия на шины и прочие компоненты электроустановки.

Согласование защиты

Селективная защита

Двойные настройки

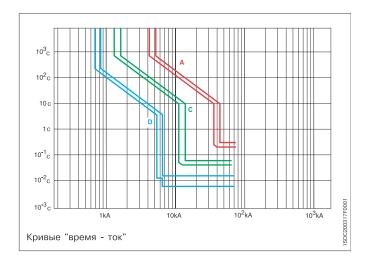
Новый расцепитель PR123 позволяет осуществить настройку двух различных наборов уставок и переключаться с одного набора на другой при помощи внешней команды. Данная функция полезна в системе с резервным источником питания (генератор), осуществляющим подачу питания только в случае исчезновения питания со стороны сети.

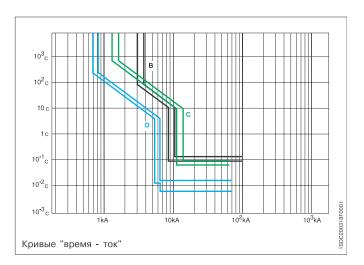

В описанной ниже системе в случае пропадания основного питания от сети можно переключиться на резервный

источник с помощью устройства ABB SACE ATS010, и отключить неприоритетные нагрузки путем размыкания выключателя-разъединителя QS1.

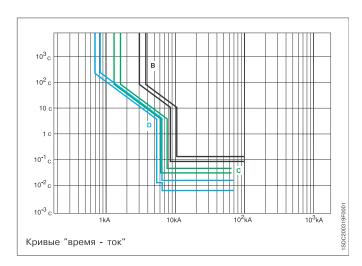
В нормальных условиях эксплуатации оборудования автоматические выключатели С настраивают таким образом, чтобы обеспечить их селективность как с автоматическим выключателем А, расположенным на стороне питания, так и с автоматическими выключателями D, расположенными на стороне нагрузки.

Переключение питания от сети на резервный источник приводит к тому, что автоматический выключатель В становится автоматическим выключателем на стороне питания автоматических выключателей С. Время срабатывания данного автоматического выключателя, представляющего собой устройство защиты ратора, должно быть установлено на более низкое значение, чем у автоматического выключателя А, поэтому уставки автоматических выключателей на стороне нагрузки могут не обеспечить селективности с автоматическим выключателем В.


Использование функции двойных настроек расцепителя PR123 дает возможность переключать автоматические выключатели С с одного набора уставок, гарантирующих селективность с А, на другой обеспечивающий набор. селективность с В. Однако, такие новые настройки могут привести к нарушению селективности автоматических выключателей С и автоматических выключателей на стороне нагрузки D.


6/8 ABB SACE

На рисунке рядом показаны кривые "время - ток" в нормальных условиях эксплуатации установки.


Установленные значения не допускают пересечения кривых.

На рисунке рядом показана ситуация, при которой после переключения питание подается от источника через автоматический выключатель В. Если настройки автоматических выключателей С не изменены, селективности с главным автоматическим выключателем В не будет.

На последнем рисунке показана возможность переключения на набор уставок, гарантирующих селективность автоматических выключателей С с выключателем В с помощью функции двойных настроек.

Согласование защиты

Селективная защита

Зонная селективность

Активировать **зонную селективность**, применимую для функций защиты S и G, можно в том случае, когда выбрана кривая с фиксированным временем и имеется вспомогательный источник питания. Данный тип селективности предполагает меньшие времена срабатывания автоматического выключателя, ближайшего к короткому замыканию, чем в случае селективной защиты по времени. Этот тип селективности подходит для радиальных сетей.

Под термином "зона" понимается часть установки между двумя последовательно включенными автоматическими выключателями. Зона короткого замыкания находится непосредственно на стороне нагрузки автоматического выключателя, который обнаруживает короткое замыкание. Каждый автоматический выключатель, который обнаруживает короткое замыкание, передает сигнал на автоматический выключатель, расположенный на стороне питания, по стандартному проводу связи. Тот автоматический выключатель, который не получает сигналов от выключателей со стороны нагрузки, подает команду на отключение в течение установленного времени селективности (40 - 200 мс).

Необходимо учитывать, что автоматические выключатели, получающие сигнал от другого расцепителя, будут работать в соответствии с установленным временем t2.

Если по какой-либо причине после истечения времени селективности автоматический выключатель, который должен был сработать, не отключился, это приведет к снятию сигнала блокировки с другого автоматического выключателя, который отключится.

Для корректной реализации зонной селективности предлагаются следующие настройки:

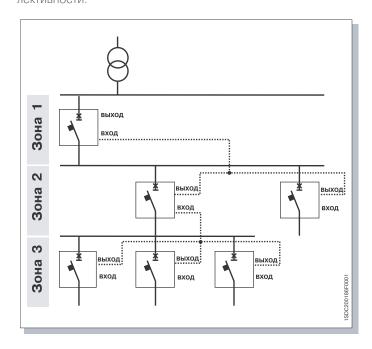
s	t2 ≥ время селективности
T.	I3 = ВЫКЛ.
G	t4 ≥ время селективности
Время	селективности одни и те же настройки для каждого автом. выключателя

6/10 ABB SACE

Для кабельной разводки можно использовать экранированную витую пару (в комплект поставки не входит; запросите информацию в ABB). Заземление экранирования должно выполняться только на расцепителе автоматического выключателя, расположенного на стороне питания.

Максимальная длина кабельной разводки между двумя расцепителями - 300 м.

Максимальное количество автоматических выключателей, подключаемых к выводам (выход Z) расцепителя - 3.


Максимальное количество автоматических выключателей, подключаемых к вводам (вход Z) расцепителя - 20.

Все автоматические выключатели Emax версий B-N-S-H-V, оснащенные расцепителями PR122 и PR123, обеспечивают реализацию функции зонной селективности.

ABB SACE предоставляет ряд инструментов для выполнения вычислений, предназначенных для того, чтобы облегчить работу проектировщиков по согласованию устройств защиты, включая слайды, комплекты программного обеспечения DOCWin и CAT, а также, таблицы селективности.

Примечание

Информация о селективности в случае замыкания на землю при установленных последовательно автоматических выключателях приведена на стр. 6/20.

Согласование защиты

Селективная защита

Таблицы селективности

Автом	ат. вы	ключат	гели Ег	nax	сав	зток	лат.	вы	клю	чате	эляі	ми -	Tma	х и	Isom	ax :	S.		
		Сторон	а питания	E	1		E	2				E 3				E4		E	6
	_		Версия	В	N	В	N	S	L*	N	S	Н	٧	L*	S	Н	٧	Н	V
		Pac	сцепитель	Е	L		Е	L				EL				EL		Е	L
Сторона нагрузки	Версия	Расцепител	ль Iu [A]		1600	1600 2000	1600		1250 1600	2500 3200		800 1250 1600 2000 2500 3200	1600 2000 2500	2000 2500	4000	3200 4000	3200 4000	5000	3200 4000 5000 6300
	В			Т	Т	Т	Т	Т	T	Т	Т	T	Т	Т	Т	Т	Т	Т	T
T1	С	TM	160	T	Т	Т	Т	T	T	T	T	T	Т	T	T	T	T	Т	
	N			T	T	Т	T	T	T	T	T	T	T	T		T	T	T	
	N			Т	T		T	T	T	T	<u>T</u>		T	T			<u>T</u>	T	T
T2	S	TM, EL	160	36	T	<u>T</u>	T	Т	T				T	T	<u>T</u>			T	
	Н	,		36	T	T	55	65	T	T	T	Т	T	T	<u>T</u>	T		T	
	L			36	T	T	55	65	T		T	75	T	T	<u>T</u>	T		T	
Т3	N	TM	250	T	T	T		T	T		T	T	T	T		T	T	T	
	S			36	T	T	T	T	T	T	T	T	T	T	T	T	T	T	
	N			T	T	T	T	T	T	T	T	T	T	T	T		<u>T</u>	T	
т.	S	TM 51	250	36	T	T	T	T	T	<u>T</u>	T		T	T	<u>T</u>		T	T	T
T4	H	TM, EL	320	36	T	T	55	65	T	T	T	T	T	T	T	T	T 100	T	T
	L			36	T T	T	55	65	100		<u>T</u>	75 75	85	100			100	T	100
	V			36		T	55	65	100	T	T		85	100	T	T	100	T	100
	N				T T	T T	T T	T	T	T T	T T	T	T		T	T T	T T	T T	
TE	S	TM, EL	400	36	<u>'</u>	<u>'</u>	55	65	T	T	<u> </u>	_ <u>'</u> _	<u> </u>	<u>'</u>	<u>'</u>	<u>'</u>	<u> </u> 	<u>'</u>	_ <u>'</u> _
T5	Н	I IVI, EL	630	36	<u>'</u>	<u>'</u>	55	65	100		<u>'</u>	75	85	100	<u>'</u> 	<u>'</u>	100	<u>'</u>	100
	V			36	<u>'</u>	<u>'</u>	55	65	100	<u>'</u>	_ <u>'</u> _	75 75	85	100	<u>'</u>	<u>'</u>	100	<u>'</u> _	100
	N			T	T	T	T	 T	T	T	- '	75 T	- 65 T	T	T	÷	T	T	T
	S			36	<u>'</u>	<u>'</u>	<u>'</u>	<u></u>	<u>'</u>		_ <u>'</u> _	_ <u>'</u> _		_ <u>'</u> _	<u>'</u> 	<u>'</u>	<u>'</u>	<u>'</u> _	_ <u>'</u>
S6	ъ Н	TM, EL	800	36	T	<u>'</u>	55	<u> </u>	T		<u>'</u>	<u>'</u>	<u> </u>	<u></u>	<u>'</u>	<u>'</u>	<u>'</u>	<u>'</u>	
	L			36	<u>'</u>	<u>'</u> _	55	65	<u>'</u>	<u>'</u> 	<u>'</u>	75	85	<u>'</u>	<u>'</u>	<u>'</u>	<u>'</u>	<u>'</u> _	_ <u>'</u> _
	S			30		- †	T	T	- 1	_ T	T	75 T	T	T	T	T	T	T	T
S7	H	EL	1250			- <u>'</u> - T	55			- ' - T	<u>'</u>	<u>'</u>	<u>'</u>		<u>'</u>	<u> </u>	<u>'</u>	<u>'</u>	'
07	Ľ	LL	1600	_		_ ' 	55	65	_		_ <u>_</u>	75	85	<u>'</u>	<u>_</u>	_ <u>_</u>	<u>'</u>	<u>_</u>	_ <u>'</u> _

Общие замечания:

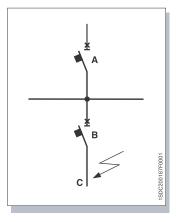
- Функция I электронных расцепителей PR121, PR122 и PR123 автоматических
- выключателей на стороне питания должна быть отключена (I3 в положении ОFF (ОТКЛ)).

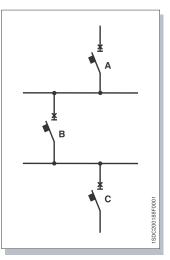
 В соответствии со Стандартами IEC 60947-2 селективность выражается в кА при напряжении питания 380 415 В переменного тока.
- Т = полная селективность (значение селективности представляет собой наименьшее значение из отключающих способностей (Іси) обоих автоматических выключателей, на стороне нагрузки и на стороне питания).
- Очень важно убедиться в том, что уставки, выбранные пользователем для расцепителей, расположенных как на стороне питания, так и на стороне нагрузки, не приводят к пересечению кривых "время-ток" функций защиты от перегрузки (функция L) и защиты от короткого замыкания с временной задержкой срабатывания (функция S).

6/12 ABB SACE

^{*} Только для автоматических выключателей Emax L с расцепителями PR122/P и PR123/P.

Согласование защиты


Резервная защита


Резервная защита предусмотрена в соответствии со Стандартами ІЕС 60364-4-43 и Приложением А Стандарта ІЕС 60947-2, которые позволяют применять устройство защиты с отключающей способностью ниже, чем расчетный ток короткого замыкания в точке его установки, но при условии, что на стороне питания установлено другое устройство защиты с необходимой отключающей способностью. В таком случае характеристики обоих устройств должны быть согласованы таким образом, чтобы значение удельной энергии, пропускаемой через них, было не выше того, которое могут выдержать без повреждения устройство на стороне нагрузки и защищаемые линии. В схеме на рисунке автоматический выключатель В, расположенный на стороне нагрузки автоматического выключателя А, может иметь более низкую отключающую способность, чем расчетный ток короткого замыкания в случае аварии в точке "С", если автоматический выключатель А удовлетворяет обоим следующим условиям:

- он имеет достаточную отключающую способность (большую или равную расчетному току короткого замыкания в точке его установки и, очевидно, большую, чем ток короткого замыкания в точке "С");
- в случае короткого замыкания в точке "С" со значением тока выше, чем отключающая способность автоматического выключателя В, автоматический выключатель А должен обеспечить ограничение удельной энергии до того значения, которое могут выдержать автоматический выключатель В и защищаемые линии.

Короткое замыкание в точке "С", таким образом, может вызвать отключение обоих выключателей, однако резервная защита должна гарантировать, что выключатель В всегда срабатывает в пределах его отключающей способности. Необходимо выбрать те варианты коммутационного оборудования, которые были проверены в лабораторных испытаниях на этот тип защиты. Возможные комбинации описаны в документации ABB SACE и компьютерных программах (слайды, DOCWin и т.д.) и приведены здесь для автоматических выключателей Emax.

Резервная защита применяется в электроустановках, где непрерывное энергоснабжение не является обязательным требованием: при отключении автоматического выключателя на стороне питания также происходит отключение питания потребителей, не затронутых коротким замыканием. Однако принятие данного типа согласования позволяет ограничить размер установки и, соответственно, сократить затраты.

Примечание

Резервная защита также может быть реализована на более чем двух уровнях: на рисунке выше приведен пример согласования для трех уровней. В данном случае выбор коммутационного оборудования сделан правильно, если проверено не менее одной из двух указанных ниже ситуаций:

- автоматический выключатель А, на стороне питания, согласован с обоими автоматическими выключателями В и С (согласование автоматических выключателей В и С не требуется);
 - каждый автоматический выключатель согласован с автоматическим выключателем на стороне нагрузки, т.е. автоматический выключатель А на стороне нагрузки согласован со следующим выключателем В, который, в свою очередь, согласован с автоматическим выключателем С

Автом. выключатель на стороне питания	Отключающая способност
E2L - E3L	130 [kA] (при 380/415 B)
Автом.выключатель на стороне нагрузки	и Предел резервной защит
T4N	65 [kA]
T40 TEN CON E4D EAD	85 [kA]
T4S - T5N - S6N - E1B - E2B	0
T4S - T5N - S6N - E1B - E2B T4H - T5S/H - S6S/H - S7S/H - E1N - E2N	100 [kA]

Направленная защита

Направленная защита основывается на возможности коррелировать режим работы автоматического выключателя с направлением тока короткого замыкания.

В зависимости от направления тока для расцепителя PR123 можно установить два различных времени срабатывания:

- время срабатывания (t7Fw) для направления тока, совпадающего (Fw) с установленным контрольным направлением;
- время срабатывания (t7Bw) для направления тока, не совпадающего (Bw) с установленным контрольным направлением.

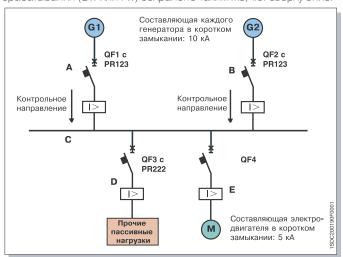
Для расцепителя PR123 можно установить только пороговое значение по току (I7).

В том случае, если направление тока короткого замыкания не совпадает (Bw) с контрольным направлением, то защита будет включена при достижении порогового значения I7 в пределах установленного периода времени t7Bw (при условии, что функции S и I не были установлены на срабатывание до функции D).

В том случае, если направление тока короткого замыкания совпадает (Fw) с контрольным направлением, то защита сработает при достижении порогового значения I7 в пределах установленного периода времени t7Fw (при условии, что функции S и I не были установлены на срабатывание до функции D).

Кроме того, если функция I активирована, и значение тока короткого замыкания превышает значение I3, автоматический выключатель сработает мгновенно, независимо от направления тока.

Контрольное направление установлено ABB как идущее от верхней части автоматического выключателя (от зоны, в которой расположен расцепитель) к его нижней части.



На рисунке выше показана фактическая конфигурация автоматических выключателей в системе. Стрелкой красного цвета указано контрольное направление, установленное на автоматическом выключателе по умолчанию.

При подаче питания на автоматический выключатель в направлении сверху вниз (питание от G2), контрольное направление должно оставаться таким, каким оно было установлено ABB.

При подаче питания на автоматический выключатель в направлении снизу вверх (питание от G1), новый расцепитель PR123 позволяет инвертировать установленное по умолчанию направление с помощью программного обеспечения.

Таким образом, все количественные параметры, измеряемые расцепителем PR123, могут быть оценены при фактическом прохождении тока через установку. Более того, в электрической схеме контрольное направление для анализа селективности и правильного учета направлений срабатывания (Вw или Fw) сохранено таким же, т.е. сверху вниз.

На следующей электрической схеме контрольные направления показаны черным цветом. При анализе конфигурации автоматических выключателей, установленных в соответствии со схемой, приведенной выше, можно заметить, что для QF2 такое направление используется по умолчанию, в то время как для QF1 направление было инвертировано при помощи программного обеспечения.

6/14 ABB SACE

Приняв некоторые численные значения токов короткого замыкания и оценив некоторые точки короткого замыкания, можно прийти к следующему выводу.

При коротком замыкании в точке В для автоматического выключателя QF1 ток будет течь в направлении A-B, совпадающем с контрольным направлением, или же, аналогично, при коротком замыкании в точке A направление тока будет B-A, что не совпадает с контрольным.

Обзор различных конфигураций приведен в следующей таблице:

Автоматический выключатель	Точка короткого замыкания	Измеренный ток[kA]	Направление	Время срабатывания
054	Α	15	Не совпадает	t7Bw
QF1	B, C, D, E	10	Совпадает	t7Fw
050	В	15	Не совпадает	t7Bw
QF2	A, C, D, E	10	Совпадает	t7Fw

Данная установка предназначена для селективности между QF1, QF2, QF3 и QF4.

Проанализировав таблицу, можно заметить, что единственный случай, когда направление тока короткого замыкания не совпадает с направлением, установленным для автоматического выключателя QF1, возникает только при коротком замыкании в точке А. Автоматический выключатель QF1 должен срабатывать быстрей, чем остальные автоматические выключатели, т.к. он ближайший к точке короткого замыкания. С этой целью время срабатывания t7Bw выключателя QF1 должно быть установлено на:

- значение меньше времени t7Fw автоматического выключателя QF2, т.к. направление тока короткого замыкания совпадает с контрольным направлением для QF2;
- значение меньше времени "t2" защитной функции S, если она есть, для расцепителя автоматического выключателя QF4. Мгновенная защита QF4 должна быть установлена в положение OFF (ВЫКЛ.) или иметь значение I3, превышающее величину составляющей электродвигателя в коротком замыкании.

Кроме того функции S и I обоих автоматических выключателей QF1 и QF2 должны быть установлены таким образом, чтобы они не срабатывали до функции D.

Аналогично процессу, описанному для автоматического выключателя QF1, для обеспечения селективности автоматический выключатель QF2 должен сработать первым в случае короткого замыкания в точке В, а при коротком замыкании в любой другой точке системы - сработать с задержкой.

Существующие уставки для функции направленной защиты D для обоих направлений (Fw и Bw) приведены ниже:

I ₇ =0.610xIn	(точность <u>+</u> 10%)	шаг 0.1xln
t ₇ =0.20s0.8c	(точность <u>+</u> 20%)	шаг 0.01с

Направленная защита

Зонная селективность D (Направленная зонная селективность)

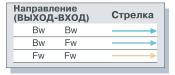
Благодаря данной функции также существует возможность обеспечить селективность в смешанных и кольцевых сетях. За счет зонной селективности с функцией D (Зонная селективность D), которую можно установить (On - Вкл.) только при отключенных функциях зонной селективности S и G (установлены на [Off] (Выкл.)), и при наличии вспомогательного источника питания, можно согласовать работу разных устройств PR123 при соответствующем кабельном соединении шин расцепителей.

Для каждого расцепителя доступны четыре сигнала:

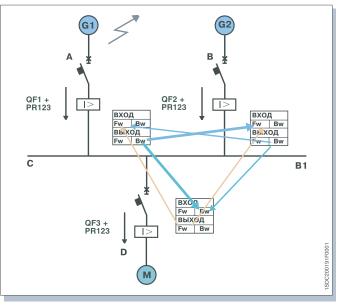
- два входных сигнала (один в совпадающем, другой в противоположном направлении), с помощью которых расцепитель получает сигнал "блокировки" от других расцепителей;
- два выходных сигнала (один в совпадающем, другой в противоположном направлении), с помощью которых расцепитель отправляет сигнал "блокировки" на другие расцепители.

Те автоматические выключатели, которые не получают сигнал "блокировки" (согласованный с направлением тока), отсылают команду на размыкание в течение промежутка времени, равного "t7sel".

Те автоматические выключатели, на которые приходит сигнал "блокировки", размыкаются в течение периода времени срабатывания для обратного или прямого направления тока, в соответствии с направлением тока.

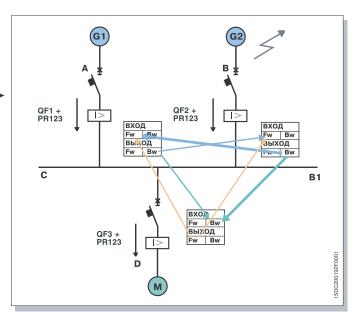

Если функция I активирована, и значение тока короткого замыкания превышает установленное значение (ІЗ), автоматический выключатель сработает мгновенно, независимо от направления тока и принятых сигналов.

Из соображений безопасности максимальная длительность сигнала "блокировки" составляет 200 мс.

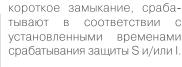

Если по какой-либо причине по истечению данного периода времени автоматические выключатели, которые должны были сработать, не разомкнутся, сигнал "блокировки" будет снят с других автоматических выключателей, которые получат команду на немедленное срабатывание. Таким образом, данная операция выполняется не позднее, чем через 200 мс. Для кабельной разводки можно использовать экранированную витую пару (в комплект поставки не входит; запросите информацию в АВВ). Заземление экрана должно выполняться только на расцепителе автоматического выключателя, расположенного на стороне питания.

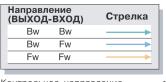
- Максимальная длина кабельной разводки, использующейся для направленной зонной селективности, между двумя блоками - 300 м.
- Максимальное количество автоматических выключателей, подключаемых к выводам (OUT Вw или OUT Fw) расцепителя - 3.
- Максимальное количество автоматических выключателей, подключаемых к вводам (IN Bw или IN Fw) расцепителя - 20.

Ниже на рисунке показаны подключения, необходимые для активации "блокировок" между различными расцепителями, а именно:



Контрольное направление


1) При коротком замыкании в точке А через автоматический выключатель QF1 проходит ток от шины В1, который течет в направлении, не совпадающем с установленным. Шина OUT Bw автоматического выключателя QF1 "блокирует" шину IN Fw автоматического выключателя ШИНУ IN автоматического выключателя QF3: т.е. , ток протекает через QF2 в том же направлении, что и было установлено, в то время как через QF3 ток протекает в направлении, не совпадающем с установленным (активные сигналы "блокировки" указаны широкими стрелками).


6/16 ABB SACE 2)При коротком замыкании в точке В через автоматический выключатель QF2 проходит ток от шины В1, который течет в направлении, не совпадающем с установленным. Шина OUT Вw автоматического выключателя QF2 "блокирует" шину IN Fw автоматического выключателя QF1 и шину IN Bw автоматического выключателя QF3: т.е., ток протекает

через QF1 в том же направлении, что и было установлено, в то время как через QF3 ток протекает в направлении, не совпадающем с установленным (активные сигналы "блокировки" указаны широкими стрелками).

3)При коротком замыкании в точке С через автоматические выключатели QF1 и QF2 протекает ток, совпадающий по направлению с установленным, в то время как через QF3 течет ток в обратном направлении. Ни один из автоматических выключателей не "блокируется" и, следовательно, все автоматические выключатели, которые затрагивает

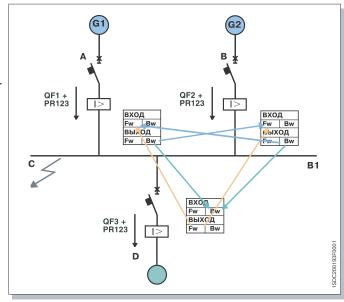
Контрольное направление ——

Направление (ВЫХОД-ВХОД)

Bw

Fw

Fw

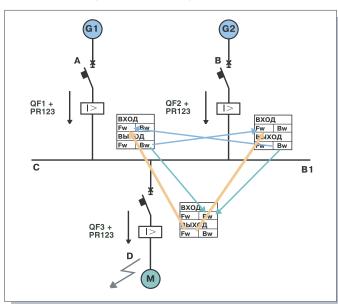

Контрольное направление

Bw

Bw

Fw

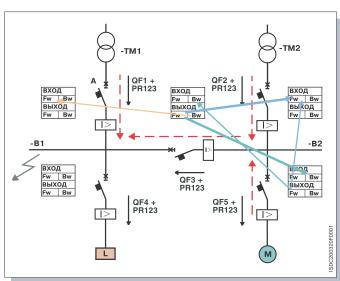
Стрелка



Направленная защита

4)При коротком замыкании в точке D через автоматический выключатель QF3 проходит ток от шины B1, который течет в направлении, совпадающем с установленным. Шина OUT Fw

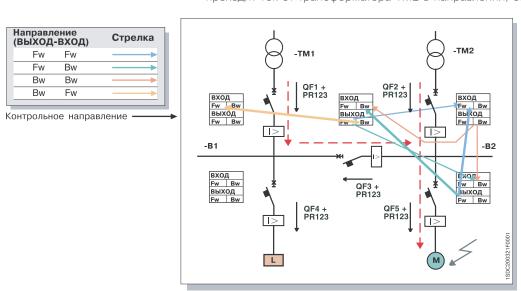
→



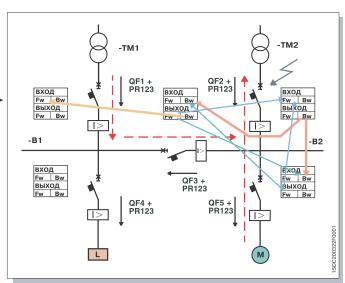
автоматического выключателя QF3 "блокирует" шины IN Fw автоматических выключателей QF1 и QF2: т.е., через оба автоматических выключателя протекают токи короткого замыкания, направления которых совпадает с установленным (активные сигналы "блокировки" указаны широкими стрелками).

В следующем примере приведен анализ сети с секционником и рассматривается режим работы устройств защиты в случае короткого замыкания:

1) Короткое замыкание на В1 с замкнутым секционником: прерывание тока короткого замыкания должно осуществляться только автоматическими выключателями QF1 и QF3, в



частности: через автоматический выключатель OF3 проходит ток от шины В2 (в направлении, совпадающем с установленным); шина OUT Fw передает сигнал "блокировки" на шину IN Fw автоматического QF2 выключателя (через который проходит TOK трансформатора TM2 В направлении, совпадающем с установленным) и на шину IN Bw автоматического выключателя QF5 (через который проходит ток от электродвигателя в направлении, не совпадающем установленным).


6/18 ABB SACE

2)Короткое замыкание в электродвигателе: в данном случае прерывание тока короткого замыкания должно осуществляться только автоматическим выключателем QF5. Через автоматический выключатель QF5 проходит ток от шин B1 и B2 (в направлении, совпадающем с установленным); поэтому шина OUT Fw автоматического выключателя QF5 "блокирует" как шину IN Fw автоматического выключателя QF2 (через который проходит ток от трансформатора TM2 в направлении, совпадающем с установленным),

так и шину IN Bw автоматического выключателя QF3 (через который проходит ток от ТМ1 в направлении, не совпадающем с установленным). Аналогично, через автоматический выключатель QF3 протекает ток от трансформатора ТМ1 в направлении, не совпадающем с установленным: следовательно, шина OUT Bw автоматического выключателя QF3 "блокирует" шину IN Fw автоматического выключателя QF1 (через который проходит ток от трансформатора ТМ1 в направлении, совпадающем с установленным).

- 3)Короткое замыкание на стороне питания трансформатора ТМ2: в данном случае прерывание тока короткого замыкания должно осуществляться только автоматическим выключателем QF2. Через автоматический выключатель QF2 проходит ток от трансформатора ТМ1 и электродвигателя в направлении, не совпадающем с установленным, в результате чего шина OUT Вw автоматического выключателя QF2 "блокирует":
- шину IN Bw автоматического выключателя QF5 (через который протекает ток от электродвигателя в направлении, не совпадающем с установленным);
- шину IN Bw автоматического выключателя QF3 (через который протекает ток от трансформатора ТМ1 в направлении, не совпадающем с установленным).

тический выключатель QF3 проходит ток от трансформатора ТМ1 в направлении, не совпадающем с установленным, в результате чего шина ОUТ Вw на этом выключателе "блокирует" шину IN Fw автоматического выключателя QF1 (через который проходит ток от трансформатора ТМ1 в направлении, совпадающем с установленным).

Аналогично, через автома-

Контрольное направление -

Защита от замыкания на землю

Автоматические выключатели с функцией защиты **G**

Автоматические выключатели, оснащенные расцепителями с функцией защиты от замыкания на землю G, обычно используются в распределительных подстанциях СН/НН для защиты трансформаторов и распределительных линий. Функция защиты G определяет

замкнутой схеме данная сумма, называемая током утечки, равна нулю, тогда как при замыкании на землю значение этой СУММЫ определяется тем, по какой цепи произошло замыкание. эффективно G Функция

тока на фазах и нейтрали. В

нами срабатывания. На рисунке, приведенном на следующей странице, показан пример возможного варианта выбора устройств защиты от замыкания на землю и их возможных параметров

защиты

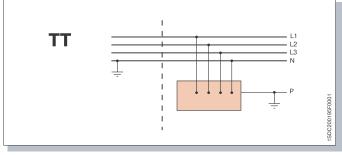
расцепителях PR121, PR122 и

PR123 имеет кривые постоян-

ной удельной энергии рассеи-

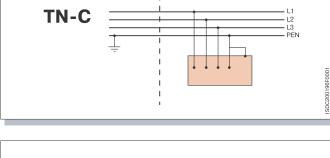
вания ($I^2t=k$) и кривые с незави-

симыми от тока (t=k) време-

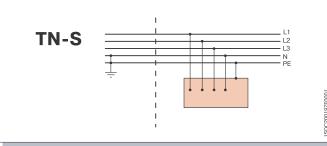

Функция

применяется в электрических векторную сумму токов, измеренных трансформаторами установках ТТ, IT и TN-S, а также

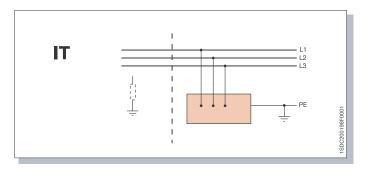
в системах TN-CS, где она ограничивается той секцией установки, которая имеет собственный нейтральный провод (N), ответвленный от проводника РЕ и проложенный отдельным проводом. В системах TN-С функция

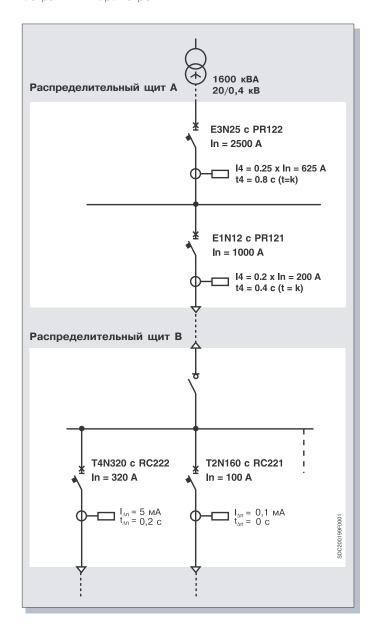

настройки. G Функция защиты автоматических выключателей в основном распределительном щите А предназначена для обеспечения селективного отключения друг относительно друга автоматических выключателей и устройств защиты от токов утечки, расположенных на стороне нагрузки распре-

делительного щита В.

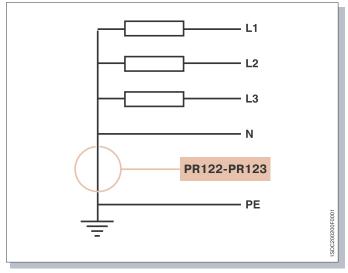


защиты G не применяется, поскольку в них единственный проводник используется одновременно в качестве нейтрали и защитного проводника.


Пороговые значения времена срабатывания защитных устройств могут выбираться в широком диапазоне, устройствам защиты стороне нагрузки.


облегчая достижение селективности для данного типа замыканий по отношению к Таким образом, селективность обеспечивается с расцепителями токов утечки, расположенными на стороне нагрузки.

6/20 **ABB SACE** Пример выбора устройств защиты от замыкания на землю настройки их параметров.



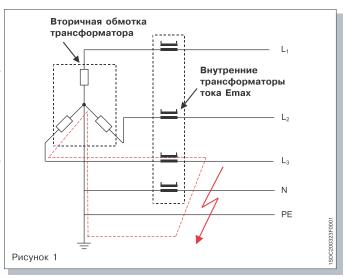
Защита от замыкания на землю

Использование тороида на проводнике, соединяющем центральный вывод соединенных в звезду обмоток трансформатора с землей

При использовании автоматических выключателей для трансформаторов СН/НН, существует возможность установки тороида на проводнике. соединяющем центральный вывод соединенных в звезду обмоток трансформатора с землей (данный вариант возможен при использовании выключателей серии SACE Emax, оснащенных электронными расцепителями PR122 и PR123). Это позволяет обнаружить ток замыкания на землю. На рисунке показан принцип защиты от замыкания на землю с помощью тороида,

установленного на проводнике, соединяющем центральный вывод соединенных в звезду обмоток трансформатора с землей.

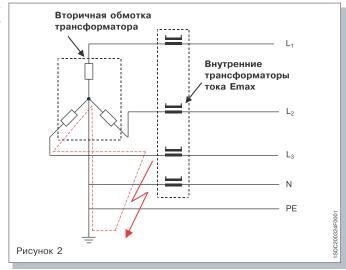
Использование этого аксессуара обеспечивает защиту от замыкания на землю (функция G) независимо от типоразмера первичных трансформаторов тока, установленных на фазах автоматического выключателя. Технические характеристики тороида приведены в таблице на стр. 6/24.


Функция двойной защиты G

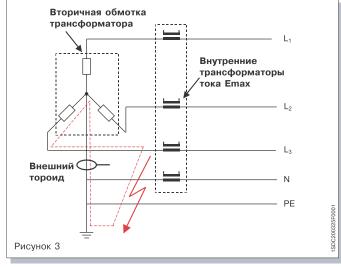
Автоматические выключатели Emax, оснащенные электронным расцепителем PR123, имеют две независимые кривые для функции G: одна - для внутренней защиты (функция G без внешнего тороида) и вторая - для внешней защиты (функция G с внешним тороидом, как описано выше).

Типичным примером применения двойной функции G является одновременная защита от замыкания на землю вторичной обмотки трансформатора и ее выводов, идущих на клеммы автоматического выключателя (внутренняя защита от замыкания на землю), а также от замыкания на землю на стороне нагрузки автоматического выключателя (внешняя защита от замыкания на землю).

Пример


На Рисунке 1 показан пример замыкания на стороне нагрузки автоматического выключателя Етах: ток замыкания протекает только через одну фазу, и в том случае, если векторная сумма измеренных четырьмя трансформаторами токов выше установленного порогового значения, электронный расцепитель активирует функцию G (и автоматический выключатель срабатывает).

6/22 ABB SACE


При использовании той же самой конфигурации замыкание на стороне питания автоматического выключателя (Рисунок 2) не приводит к активации функции G, т.к. ток замыкания не влияет ни на трансформатор

тока на фазе, ни на трансформатор тока на нейтрали.

Применение двойной функции защиты G позволяет установить внешний тороид так, как показано на Рисунке 3, что даст возможность определять замыкание на землю и на стороне питания автоматического

выключателя Етах. В этом случае аварийный контакт второй функции G используется для отключения автоматического выключателя, установленного на первичной обмотке для отключения аварийного участка цепи.

Защита от замыкания на землю

Если при использовании конфигурации, приведенной на Рисунке 3, замыкание произойдет на стороне нагрузки автоматического выключателя Етах, то ток замыкания будет влиять как на тороид, так и на трансформаторы тока, установленные на фазах. Чтобы определить, какой автоматический выключатель должен сработать (автоматический выключатель СН или НН), необходимо соответственно согласовать их времена срабатывания; в частности, необходимо установить такие времена, чтобы срабатывание автоматического выключателя НН под воздействием внутренней функции G происходило до выдачи аварийного сигнала с внешнего тороида. Следовательно, благодаря селективности по времени-току двух функций защиты G автоматический выключатель на стороне НН сможет отключить замыкание на землю до того, как автоматический выключатель СН на первичной обмотке трансформатора получит команду на срабатывание. Очевидно, что если замыкание произойдет на стороне питания автоматического выключателя НН, то сработает только автоматический выключатель на стороне СН.

В таблице ниже приведены основные характеристики ряда тороидальных трансформаторов тока (выпускаются только в замкнутом исполнении).

Защита от токов утечки

Характеристики ряда тороидов

100 A, 250 A, 400 A, 800 A
тороида
D = 165 мм
W = 160 MM
Н = 35 мм
Ø = 112 мм

Выключатели Етах могут быть снабжены тороидом, устанавливаемым на стороне нагрузки автоматического выключателя для обеспечения защиты от замыкания на землю.

В частности, к электронным расцепителям, имеющим данную функцию, относятся следующие:

- PR122/P L S I Rc,
- PR122/P L S I G с "измерительным" блоком,
- PR123/P L S I G.

Ими могут быть оснащены автоматические выключатели следующих типов: трех- и четырехполюсные E2 и E3, а также E4 (трехполюсные). Благодаря широкому диапазону параметров настройки, перечисленные выше электронные расцепители с функцией защиты от токов утечки подходят для установок, где должна быть создана система защиты от токов утечки, согласованная с различными уровнями распределения энергии - от главного распределительного щита до конечного потребителя.

Они особенно подходят для случаев, когда требуется обеспечить и селективные цепочки защиты от токов утечки с низкой чувствительностью, например, с частичной (по току) или полной (по времени) селективностью, а также с высокой чувствительностью, чтобы обеспечить защиту людей, попавших под напряжение.

Такие электронные расцепители с защитой от токов утечки подходят для применения в случаях, когда присутствует:

- переменный ток утечки (тип АС);
- переменный и/или пульсирующий ток с постоянными составляющими (тип A).

В таблице ниже приведены основные технические параметры защиты от токов утечки:

Чувствительность Ідп	[A]	0.3-0.5-0.7-1-2-3 (переключатель в положении 0,1)
		3-5-7-10-20-30 (переключатель в положении 1)
Время срабатывания	[c]	0.06-0.1-0.2-0.3-0.4-0.5-0.8-1-3-5
Тип		АС и А

6/24 ABB SACE

Использование щитовых электронных реле SACE RCQ для защиты от токов утечки

Автоматические выключатели серии SACE Emax с номинальным током до 2000A, оснащенные независимыми расцепителями, могут работать совместно с щитовым реле для защиты от токов утечки: SACE RCQ. Такое реле с отдельным тороидальным трансформатором (для установки снаружи на проводниках линии) обеспечивает защиту от токов утечки на землю в диапазоне значений от 0,03 до 30 A.

Благодаря широкому диапазону параметров настройки щитовое реле SACE RCQ подходит для установок, где должна быть создана система защиты от токов утечки, согласованная с различными уровнями распределения энергии - от главного распределительного щита до конечного потребителя.

Это реле особенно подходит для случаев, когда требуется обеспечить и селективные цепочки защиты от токов утечки с низкой чувствительностью, например, с частичной (по току) или полной (по времени) селективностью, а также с высокой чувствительностью, чтобы обеспечить защиту людей при попадании под напряжение.

При пропадании вспомогательного питания команда отключения подается спустя 100 мс или более, согласно установленному времени задержки.

Щитовые реле	для	защиты	от	токов	утечки	SACE R	CQ
Напряжение пита	ния	AC		[B]		80 500)
		DC		[B]		48 125	5
Уставка срабатыв	зания	$I_{\Delta n}$					
- 1-ый диапазон і	настро	ек		[A]	0.03 - 0	.05 - 0.1 -	0.3 - 0.5
- 2-ый диапазон н	астро	ек		[A]	1 -	3 - 5 - 10	- 30
1-ый диапазон регу	л.врем	ени сраба	тыва	ания [с]	0 - 0	0.05 - 0.1 -	0.25
2-ый диапазон регу	л.врем	иени сраба	тыва	ания [с]	0.	5 - 1 - 2.5	- 5
Тип используемы	х нера	зборных	тран	нсформ	аторов		
- Тороидальный т	рансф	орматор	60n	им [А]		0.03 30)
- Тороидальный т	рансф	орматор	10N	ıм [A]		0.03 30)
Тип используемы	х разм	иыкаемых	тра	нсформ	иаторов		
- Тороидальный т	рансф	орматор	10N	ім [А]		0.3 30	
- Тороидальный т	рансф	орматор	180	мм [А]		0.1 30	
- Тороидальный т	рансф	орматор	230	мм [А]		0.1 30	
Габаритные разм	еры (Г	хВхШ)		[MM]	96	3 x 96 x 13	1.5
Габарит. размеры в двери щита	ы монт	аж. отвер	сти	я [мм]		92 x 92	

Pene SACE RCQ пригодны для защиты от утечки на землю переменного тока (тип AC), переменного и/или пульсирующего тока с постоянными составляющими (тип A) и для создания селективной защиты от токов утечки на землю.

Реле SACE RCQ воздействует на механизм расцепителя автоматического выключателя через независимый расцепитель (заказывается клиентом), который размещается непосредственно в автоматическом выключателе.

В таблице ниже приведены основные характеристики реле SACE RCQ.

Габаритные ра	азмеры	внешнего	тороида д	џля ре	ле SAC	CE RCQ
Внешние габар.	размеры	тороида	Замкнутый	F	азмыка	аемый
	D [мм]	94	165	166	241	297
H D	W [MM]	118	160	200	236	292
w	Н [мм]	81	40	81	81	81
Внутр. диаметр	Ø [мм]	60	110	110	180	230

Коммутация и защита трансформаторов

Общие сведения

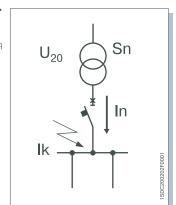
При выборе автоматических выключателей для защиты стороны НН трансформаторов СН/НН необходимо учитывать следующее:

- номинальный ток стороны НН защищаемого трансформатора, который определяет номинальный ток автоматического выключателя и уставки защитных функций;
- максимальный ток короткого замыкания в точке установки, который определяет требуемую отключающую способность устройства защиты.

МН-НН подстанция с одним трансформатором

Номинальный ток стороны НН трансформатора определяется следующим соотношением:

$$In = \frac{Sn \times 10^3}{\sqrt{3} \times U_{20}}$$


где:

Sn = номинальная мощность трансформатора, кВА, U20 = номинальное напряжение вторичной обмотки (без

нагрузки) трансформатора, В,

In = номинальный ток стороны НН трансформатора, А

(действ. значение)

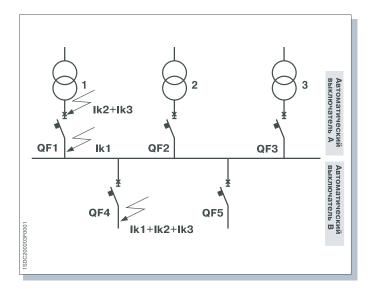
Ток трехфазного короткого замыкания при полном напряжении непосредственно на выводах НН трансформатора можно рассчитать по следующей формуле (принимая мощность короткого замыкания на первичной обмотке бесконечной):

$$lk = \frac{ln \times 100}{l \cdot lk\%}$$

где:

Uk % = напряжение короткого замыкания трансформатора в %, In = номинальный ток стороны HH, A (действующее значение) Ik = номинальный ток трехфазного короткого замыкания на стороне HH, A (действ. значение).

Фактические значения тока короткого замыкания ниже значений, полученных выше, если автоматический выключатель установлен на некотором расстоянии от трансформатора, так как используемые кабели или шинные соединения имеют определенное сопротивление. На практике значения короткого замыкания, создаваемые трансформатором, также подвержены влиянию мощности короткого замыкания Sk сети, от которой запитан трансформатор.


6/26 ABB SACE

СН-НН подстанция с несколькими трансформаторами, включенными параллельно

Расчет номинального тока трансформатора выполняется по формуле, приведенной в предыдущем разделе. Минимальная отключающая способность каждого автоматического выключателя на стороне НН должна быть выше наибольшего из следующих значений (пример для трансформатора 1 на рисунке относится к трем трансформаторам, включенным параллельно):

- Ik1 (ток короткого замыкания трансформатора 1) в случае короткого замыкания непосредственно на стороне нагрузки автоматического выключателя QF1:
- Ik2 + Ik3 (Ik2 и Ik3 = токи короткого замыкания трансформаторов 2 и 3) в случае короткого замыкания на стороне питания автоматического выключателя QF1.

Автоматические выключатели QF4 и QF5 на отходящих линиях должны иметь отключающую способность выше, чем lk1 + lk2 + lk3; очевидно, что составляющая каждого трансформатора в токе короткого замыкания зависит от мощности короткого замыкания в сети, к которой подключен трансформатор, и от сопротивления линии, соединяющей трансформатор с автоматическим выключателем (определяется для каждого конкретного случая отдельно).

Коммутация и защита трансформаторов

Коммутация и защита трансформаторов Sk=750 MBA Vn= 400 B

	Тран	юфо	рмато	р Ав	томаті	ический выключа (сторона НН)	атель А Автоматический выключатель В (автоматический выключатель отходящей линии								
	S _r	U _k	Трансф I _,	Шина I _ь	Отход: линия трансо I _k	ящ. Тип Расцепитель þ.	Шина I _k								
	[kBA]	%	[A]	[A]	[kA]	размер	[kA]	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
	1x500	4	722	722	17.7	E1B 800 In=800	17.7	E1B08*							
\vdash	1x630	4	909	909	22.3	E1B 1250 In=1000	22.3	E1B08*							
\bowtie	1x800	5	1155	1155	22.6	E1B 1250 In=1250	22.6	E1B08*							
	1x1000	5	1443	1443	28.1	E1B 1600 In=1600	28.1	E1B08*	E1B12*	E1B12*					
N N A A	1x1250	5	1804	1804	34.9	E2B 2000 In=2000	34.9	E1B08*	E1B12*	E1B12*	E1B16*				
	1x1600	6.25	2309	2309	35.7	E3N 2500 In=2500	35.7	E1B08*	E1B12*	E1B12*	E1B16*	E2B20*			
* * *	1x2000	6.25	2887	2887	44.3	E3N 3200 In=3200	44.3	E1N08*	E1N 12*	E1N12*	E1N16*	E2N20*	E3N25*		
1 1 B	1x2500	6.25	3608	3608	54.8	E4S 4000 In=4000	54.8	E2N12*	E2N 12*	E2N12*	E2N16*	E2N20*	E3N25*	E3N32*	
	1x3125	6.25	4510	4510	67.7	E6H 5000 In=5000	67.7	E2S08*	E2S12*	E2S12*	E2S16*	E2S20*	E3S25*	E3S32*	E4S40

	Трансформатор Автоматический выключатель А Автоматический выключатель В (сторона НН) (автоматический выключатель отходящей линии)														ии)	
	S,	U _k	Трансф I _,	Шина I _ь	Отходя линия трансф І _к	ящ. Тип Ра Э.	сцепитель	Шина I _k								
\vdash	[kBA]	%	[A]	[A]	[kA]		размер	[kA]	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
\forall	2x500	4	722	1444	17.5	E1B 800	In=800	35.9	E1B08*							
	2x630	4	909	1818	21.8	E1B 1250	In=1000	43.6	E1N08*	E1N12*	E1N12*	E1N16*				
	2x800	5	1155	2310	22.1	E1B 1250	In=1250	44.3	E1N08*	E1N12*	E1N12*	E1N16*	E2N20*			
	2x1000	5	1443	2886	27.4	E1B 1600	In=1600	54.8	E2N12*	E2N12*	E2N12*	E2N16*	E2N20*	E3N25*		
<u>*</u> * *	2x1250	5	1804	3608	33.8	E2B 2000	In=2000	67.7	E2S08*	E2S12*	E2S12*	E2S16*	E2S20*	E3S25*	E3S32*	
ф ф В	2x1600	6.25	2309	4618	34.6	E3N 2500	In=2500	69.2	E2S08*	E2S12*	E2S12*	E2S16*	E2S20*	E3S25*	E3S32*	E4S40
	2x2000	6.25	2887	5774	42.6	E3N 3200	In=3200	85.1	E3H12*	E3H12*	E3H12*	E3H16*	E3H20*	E3H25*	E3H32*	E4H40

	Трансформатор Автоматический выключато (сторона НН)													ыключа тель О		3 цей лиі	нии)
\$ \$ 8	2	S _r	U _k	Трансф І,	Шина I _ь	Отходя линия трансф І _к	ящ. Тип Рас ф.	цепитель	Шина I _k								
		[kBA]	%	[A]	[A]	[kA]		размер	[kA]	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
* * *	* A	3x630	4	909	2727	42.8	E1N 1250	In=1000	64.2	E2N12*	E2N12*	E2N12*	E2N16*	E2N20*	E3N25*		
		3x800	5	1155	3465	43.4	E1N 1250	In=1250	65	E2N12*	E2N12*	E2N12*	E2N16*	E2N20*	E3N25*		
* *	* -	3x1000	5	1443	4329	53.5	E2N 1600	In=1600	80.2	E2S800*	E2S12*	E2S12*	E2S16*	E2S20*	E3H25*	E3H32*	
	В	3x1250	5	1804	5412	65.6	E2S 2000	In=2000	98.4	E3H12*	E3H12*	E3H12*	E3H16*	E3H20*	E3H25*	E3H32*	E4H40
		3x 1600	6,25	2309	6927	67	E3S 2500	In=2500	100.6	E3V08*	E3V 12*	E3V12*	E3V16*	E3V20*	E3V25*	E3V32*	E4V40

ВНИМАНИЕ!

Данная таблица справедлива для условий, указанных на предыдущей странице. Информация для выбора автоматических выключателей корректна только для рабочего тока и расчетного тока короткого замыкания. Чтобы правильно выбрать автоматический выключатель, следует учитывать и другие факторы, такие как селективность, резервная защита, решение использовать токоограничивающие автоматические выключатели, и т.д.

Все предлагаемые автоматические выключатели относятся к серии SACE Emax. Позиции, отмеченные звездочкой (*), могут быть заменены автоматическими выключателями серии Tmax или Isomax. Необходимо также иметь в виду, что указанные в таблице токи короткого замыкания были рассчитаны при мощности на стороне питания трансформаторов 750 MBA и без учета сопротивления шин и соединений с автоматическими выключателями.

6/28 ABB SACE

Коммутация и защита трансформаторов Sk=750 MBA Vn= 690 B

	Тран	сфор	омато	р Авт		ческий ві (сторона						атический выключатель В ий выключатель отходящей	линии)
	S _r	U _k	Трансф І _,	Шина I _ь	Отходя линия трансф І _к	іщ. Тип Рас Э.	сцепитель	Шина I _k					
	[kBA]	%	[A]	[A]	[kA]		размер	[kA]	400A	630A	800	A 1000 A 1250 A 1600 A 2000 A 2500 A	3200 A 4000 A
	1x500	4	418	418	10.3	E1B 800	In=630	10.3	E1B08*				
\vdash	1x630	4	527	527	12.9	E1B 800	In=630	12.9	E1B08*				
\approx	1x800	5	669	669	13.1	E1B 800	In=800	13.1	E1B08*	E1B08	Ar .		
	1x1000	5	837	837	16.3	E1B 1000	In=1000	16.3	E1B08*	E1B08	*E1B0	8*	
, ^X A	1x1250	5	1046	1046	20.2	E1B 1250	In=1250	20.2	E1B08*	E1B08	*E1B0	8*	
	1x1600	6.25	1339	1339	20.7	E1B 1600	In=1600	20.7	E1B08*	E1B08	*E1B0	8* E1B10* E1B12*	
* * *	1x2000	6.25	1673	1673	25.7	E2B 2000	In=2000	25.7	E1B08*	E1B08	*E1B0	8* E1B10* E1B12* E2B16*	
1 1 B	1x2500	6.25	2092	2092	31.8	E3N 2500	In=2500	31.8	E1B08*	E1B08	*E1B0	8* E1B10* E1B12* E2B16*	
	1x3125	6.25	2615	2615	39.2	E3N 3200	In=3200	39.2	E2B16*	E2B16	*E2B1	6* E2B16* E2B16* E2B16* E2B20*	

	Трансформатор Автоматический выключатель А Автоматический выключатель В (сторона НН) (автоматический выключатель отходящей линии)													
	S,	U,	Грансф	Шина	Отходя линия	щ. Тип Рас	сцепитель	Шина						
	'	κ.	I,	I _b	трансф			I _k						
					l _k									
<u> </u>	[kBA]	%	[A]	[A]	[kA]		размер	[kA]	400A 63	30A 8	800 A	1000 A 1250 A 1600 A 2000 A 2500 A 3200	A 4000 A	
$\forall \forall \exists$	2x500	4	418	837	10.1	E1B800	In=630	20.2	E1B08* E1E	B08*				
	2x630	4	527	1054	12.6	E1B800	In=630	25.3	E1B08* E1E	B08* E	1B08*			
•* •* A	2x800	5	669	1339	12.8	E1B800	In=800	25.7	E1B08* E1E	B08* E	1B08*I	E1B10*		
	2x1000	5	837	1673	15.9	E1B1000	In=1000	31.8	E1B08* E1E	B08* E	1B08*I	E1B10*E1B12*		
* * * -	2x1250	5	1046	2092	19.6	E1B1250	In=1250	39.2	E2B16* E2E	B16* E	2B16*I	E2B16* E2B16* E2B16*		
1 1 B	2x1600	6.25	1339	2678	20.1	E1B1600	In=1600	40.1	E2B16* E2E	B16* E	2B16*I	E2B16* E2B16* E2B16* E2B20*		
	2x2000	6.25	1673	3347	24.7	E2B2000	In=2000	49.3	E2N10*E2N	V10*E2	2N10*I	E2N10*E2N12*E2N16*E2N20*E3N25*		

ВНИМАНИЕ!

Данная таблица справедлива для условий, указанных на предыдущей странице. Информация для выбора автоматических выключателей корректна только для рабочего тока и расчетного тока короткого замыкания. Чтобы правильно выбрать автоматический выключатель, следует учитывать и другие факторы, такие как селективность, резервная защита, решение использовать токоограничивающие автоматические выключатели, и т.д.

Все предлагаемые автоматические выключатели относятся к SACE Emax. Позиции, отмеченные звездочкой (*), могут быть заменены автоматическими выключателями серии Tmax или Isomax. Необходимо также иметь в виду, что указанные в таблице токи короткого замыкания были рассчитаны при мощности на стороне питания трансформаторов 750 МВА и без учета сопротивления шин и соединений с автоматическими выключателями.

Примечание

составляет 1,3 I_n.

Проверка, требуемая Стандартами

IEC 60364-4-43, предусматривает, что защита от перегрузки должна иметь ток срабатывания І_f меньше,

чем 1,45 I_7 ($I_f \le 1,45 I_7$), это условие

всегда удовлетворяется, поскольку автоматические выключатели SACE

Етах соответствуют Стандартам СЕІ

EN 60947-2 и для них это значение

Защита линий электропитания

Для правильного выбора автоматических выключателей для коммутации и защиты линии питания необходимо знать следующее:

- рабочий ток линии I_b;
- номинальный ток кабеля I₂;
- сечение S и тип изоляции кабеля с коэффициентом K;
- ток короткого замыкания lk в точке установки автоматического выключателя.

Выбранное устройство защиты должно иметь отключающую способность (Іси или Ісѕ при напряжении системы) выше и равную значению тока короткого замыкания в точке установки такого устройства. Рабочие характеристики выбранного устройства должны удовлетворять следующим условиям:

Защита от перегрузки

$$I_{b} \le I_{n} \le I_{z}$$

$$I_{f} \le 1,45 I_{z}$$

гле:

I_b рабочий ток цепи;

 I_{7} номинальный ток кабеля;

I_п выбранный номинальный ток устройства защиты;

 $I_{\rm f}$ ток, обеспечивающий эффективную работу устройства защиты.

Благодаря широкому диапазону параметров настройки, расцепителей PR121-PR122-PR123, приведенные выше условия всегда можно соблюдать.

Защита от короткого замыкания

Считая, что проводник перегревается адиабатически при прохождении тока короткого замыкания, следует проверить следующее условие:

$$\left(\mathsf{I}^2\mathsf{t}\right)_{\substack{\mathsf{а}\mathsf{в}\mathsf{т}\mathsf{o}\mathsf{m}\mathsf{a}\mathsf{t}\mathsf{u}\mathsf{u}\mathsf{e}\mathsf{c}\mathsf{k}\mathsf{u}\check{\mathsf{u}}\\\mathsf{b}\mathsf{i}\mathsf{k}\mathsf{n}\mathsf{i}\mathsf{o}\mathsf{v}\mathsf{a}\mathsf{t}\mathsf{e}\mathsf{n}\mathsf{b}}} \leq \left(\mathsf{K}^2\mathsf{S}^2\right)_{\mathsf{k}\mathsf{a}\mathsf{f}\mathsf{e}\mathsf{n}\mathsf{b}}$$

т.е. удельная энергия рассеивания (Pt) автоматического выключателя должна быть меньше или равна удельной энергии рассеивания (K²S²), выдерживаемой кабелем.

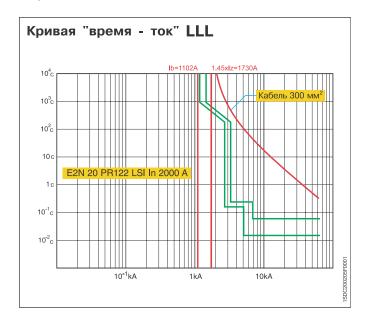
Также необходимо убедиться в том, что уставка срабатывания защиты от короткого замыкания не выше чем минимальное значение тока короткого замыкания в конце линии.

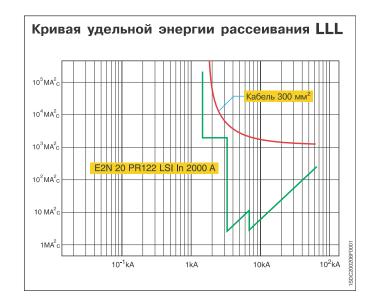
Минимальный ток короткого замыкания представляет собой ток, соответствующий короткому замыканию между фазой и нейтралью (или между фазой и фазой, если нейтральный провод не существует) в самой дальней точке проводника.

Защита от косвенного контакта

Если ток утечки проходит через фазу или ту часть установки, которая обычно не находится под напряжением, необходимо проверить, что автоматический выключатель срабатывает в течение периода времени, предписанного международными стандартами для значений тока выше или равных току утечки.

Исходя из значения данного тока, можно использовать функцию І расцепителя, функцию G, либо, при очень низких значениях, устройство RCQ.


На данном рисунке показано, какую функцию электронного расцепителя или устройство следует применять в зависимости от величины тока замыкания на землю.


6/30 ABB SACE

Пример:

В установке с Un=400 В и Ik=45 кА питание на нагрузку с Ib=1102A подается по 4 параллельным кабелям, с EPR изоляцией и сечением 300 мм 2 , Iz=1193 A.

При соответствующих настройках автоматический выключатель E2N2000 In=2000 A, оснащенный электронным расцепителем PR122, обеспечивает защиту кабеля в соответствии с приведенными выше условиями и как показано на диаграммах ниже.

Коммутация и защита генераторов

Автоматические выключатели Emax пригодны для использования с генераторами низкого напряжения, применяемыми в следующих случаях:

- А резервные генераторы для первичных нагрузок
- В генераторы, отключенные от питающей электрической сети
- С генераторы для небольших электростанций, включенные параллельно с другими генераторами и, возможно, с сетью энергоснабжения.

В случаях А и В генератор не работает параллельно с сетью электроснабжения, поэтому ток короткого замыкания зависит непосредственно от параметров генератора и, возможно, от подключенных потребителей.

В случае С, отключающая способность должна определяться с учетом тока короткого замыкания, добавляемого сетью в точке установки автоматического выключателя.

Основными пунктами проверки защиты генератора являются:

- ток короткого замыкания, создаваемый генератором; такую оценку может выполнить только специалист, знакомый с типовыми значениями реактивного сопротивления и постоянными времени устройства. Следует просто помнить, что обычно устройства защиты от короткого замыкания должны иметь низкие уставки (2+4 x ln);
- предельное значение тепловой перегрузки устройства. В соответствии со Стандартом IEC 60034-1 данное значение установлено на величину 1,5 x ln в течение 30 секунд.

Подробное описание процедуры оценки см. в программе DOCWin или специализированной литературе.

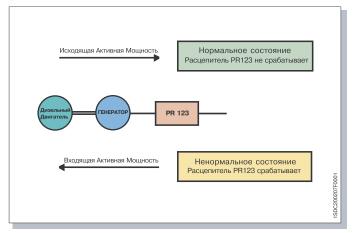
Электронные расцепители предлагают широкий диапазон настроек: PR121 Пороговое значение I (1,5-15) x In Пороговое значение S (1-10) x In PR122 Пороговое значение I (1,5-15) x In Пороговое значение S (0,6-10) x In PR123 Пороговое значение I (1,5-15) x In Пороговое значение S (0,6-10) x In, что делает автоматические выключатели SACE Emax идеально подходящими для защиты мощных генераторов от токов короткого замыкания и тепловой перегрузки.

6/32 ABB SACE

Таблица для выбора автоматических выключателей для защиты генераторов

В таблице приведены номинальные токи автоматических выключателей, основанные на электротехнических параметрах генераторов. Для выбора автоматического выключателя необходимо определить требуемую отключающую способность.

Существующие электронные расцепители подходят под все требования.

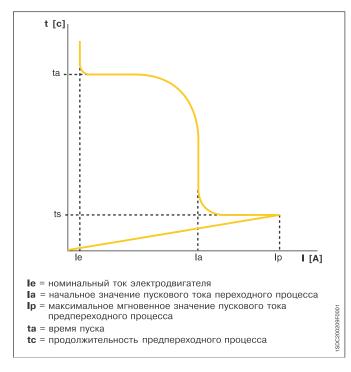

Частота 50	Гц - Напряже	ние 400 В	Частота 60) Гц - Напряже	ние 450 В
Номинальная мощность генератора переменного тока [кВА]	Номинальный ток генератора переменного тока [A]	Номинальный ток автоматического выключателя [A]	Номинальная мощность генератора переменного тока [кВА]	Номинальный ток генератора переменного тока [A]	Номинальный ток автоматического выключателя [A]
630	909	1000	760	975	1000
710	1025	1250	850	1091	1250
800	1155	1250	960	1232	1250
900	1299	1600	1080	1386	1600
1000	1443	1600	1200	1540	1600
1120	1617	2000	1344 - 1350	1724 - 1732	2000
1250	1804	2000	1500	1925	2000
1400	2021	2500	1650 - 1680 - 1700	2117 - 2155 - 2181	2500
1600	2309	2500	1920 - 1900	2463 - 2438	2500
1800	2598	3200	2160 - 2150	2771 - 2758	3200
2000	2887	3200	2400	3079	3200
2250	3248	4000	2700	3464	4000
2500	3608	4000	3000	3849	4000
2800	4041	5000	3360	4311	5000
3150	4547	5000	3780	4850	5000
3500	5052	6300	4200	5389	6300

Коммутация и защита генераторов

Защита от обратной мощности

Защита от обратной мощности срабатывает в том случае, когда активная мощность поступает на генератор, а не передается от него, как это бывает при нормальных условиях эксплуатации. Реверсирование мощности происходит тогда, когда механическая мощность, передаваемая главным двигателем привода генератора, резко падает. При таких условиях генератор работает как электродвигатель, что может привести к таким серьезным повреждениям приводных двигателей, как перегрев паровых турбин, кавитация гидротурбин или взрыв несгоревшего дизельного топлива в дизельных двигателях.

При падении мощности, измеренной расцепителем, ниже нуля срабатывает расцепитель PR123, отключая автоматический выключатель и, следовательно, предотвращая возможные повреждения.


6/34 ABB SACE

Коммутация и защита асинхронных электродвигателей

Низковольтные автоматические воздушные выключатели могут обеспечивать в цепях питания трехфазных асинхронных электродвигателей следующие функции:

- коммутацию;
- защиту от перегрузки;
- защиту от короткого замыкания.

А = Автоматический выключатель
 В = устройство защиты от перегрузки
 (с обратнозависимой
 долговременной задержкой
 срабатывания)
 С = защита от короткого замыкания
 (мгновенная)
 М = асинхронный электродвигатель

Схема прямого пуска асинхронного электродвигателя при помощи только автоматического выключателя, оснащенного электронным расцепителем.

Типовая кривая тока при пуске трехфазного асинхронного электродвигателя.

Данное решение подходит для тех случаев, когда частота коммутации не высока, что обычно характерно для мощных электродвигателей. В данном случае, использование только автоматического выключателя для коммутации и защиты электродвигателя представляет собой эффективное решение, которое имеет преимущество вследствие его экономичности, надежности, простоты установки, технического обслуживания и компактности.

Автоматические выключатели серии SACE Emax (не токоограничивающие) способны обеспечить коммутацию и защиту электродвигателя за счет своей высокой отключающей способности и широкого диапазона настроек параметров защиты, что обеспечивается электронными расцепителями. Автоматические выключатели SACE Emax пригодны для использования с электродвигателями с номинальной мощностью от 355 кВт до 630 кВт. Для использования с электродвигателями с номинальной мощностью до 355 кВт могут также использоваться автоматические выключатели SACE Isomax и Tmax. Электродвигатели с мощностью более 630 кВт работают, как правило, от сети среднего напряжения.

Коммутация и защита асинхронных электродвигателей

Коммутация трехфазных асинхронных электродвигателей требует особого внимания к фазе пуска, т.к. ток во время данной фазы ведет себя стандартным образом, показанным на рисунке, что необходимо учитывать при выборе устройств защиты.

Для правильного выбора устройств коммутации и защиты электродвигателя очень важно определить типовые значения времен и токов, обозначенных на рисунке. Как правило, эти данные предоставляются производителем электродвигателя.

В качестве стандартных применяются следующие соотношения:

- la = 6-10 le (la и le: действующие значения)
- lp = 8-15 le (lp и le: действующие значения)

Уставка защитных расцепителей должна выбираться таким образом, чтобы:

- предотвратить нежелательное срабатывание;
- обеспечить защиту установки от сверхтоков, которые могут возникнуть в любой точке на стороне нагрузки автоматического выключателя (включая короткие замыкания внутри электродвигателя).

Значения уставок защиты с обратнозависимой долговременной задержкой срабатывания и мгновенной защиты от короткого замыкания должны быть заданы как можно ближе к кривой пуска электродвигателя, однако так, чтобы избежать пересечения.

Примечание

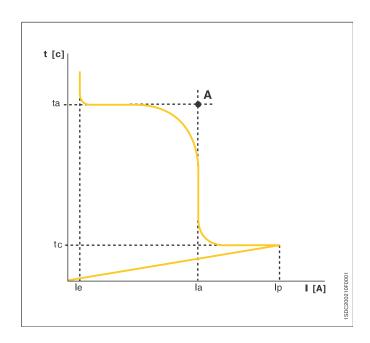
Стандарт IEC 60947-4-1 описывает режимы пуска электродвигателей. Для защиты от перегрузки рассматриваются следующие классы:

Класс	Время размыкания t (с) для тока I = 7,2 x I1 (I1 = ток уставки расцепителя))
10A	2 < t ≤ 10
10	4 < t ≤ 10
20	6 < t ≤ 20
30	9 < t ≤ 30

В таблице указано, что устройство защиты должно сработать через время t для данного класса, когда ток, протекающий через защищаемое устройство, в 7,2 раза превышает ток уставки расцепителя (равный номинальному току электродвигателя).

Деление устройств на классы перегрузки напрямую связано со временем пуска электродвигателя: например, для электродвигателя со временем пуска в 5 секунд необходимо устройство защиты класса 20.

Те же самые стандарты предусматривают определенные требования для устройств защиты в случаях трехфазной работы или при пропадании фазы.


6/36 ABB SACE

Внимание!

Кривые электродвигателя и расцепителей сопоставимы в том плане, что они отражают зависимости токов от времени, но имеют принципиальные различия:

- кривая пуска электродвигателя представляет изменение во времени значений пускового тока;
- на кривой расцепителя представлены значения токов и соответствующие им времена срабатывания устройства защиты.

Кривая срабатывания при перегрузке выбрана правильно, если она расположена непосредственно над точкой А (см. рисунок ниже), которая находится в вершине прямоугольника, чьи стороны образованы линиями, проведенными, соответственно, к времени пуска "ta" и току "la", термически эквивалентному пусковому току.

Трехфазная работа

Устройство защиты от перегрузок не должно вызывать отключение менее чем через два часа при токе, превышающем номинальный ток электродвигателя в 1,05 раз в холодном состоянии и должно отключать менее чем через два часа при токе, превышающем в 1,2 раза номинальный ток, как указано в таблице ниже. (стр. 6/39).

Коммутация и защита асинхронных электродвигателей

Работа при пропадании одной фазы

В соответствии со Стандартом IEC 60947-4-1 расцепитель с компенсацией температуры и чувствительный к потере фазы:

- не должен отключаться ранее, чем через два часа при 20°С, когда одна фаза проводит 90% In, а две другие 100% In;
- должен отключаться не позже, чем через два часа при 20°С в случае потери фазы, когда значение тока в запитанных полюсах достигает величины, превышающую номинальное значение тока ln в 1,15 раза. При использовании расцепителей PR122 и PR123 можно контролировать обрыв фазы, активировав функцию перекоса фаз.

Выбор автоматических выключателей для защиты электродвигателей

В таблицах на следующих страницах приведены номинальные значения характеристик электродвигателей мощностью от 355 до 630 кВт с автоматическими выключателями серии SACE Emax для коммутации и защиты электродвигателей по категории АС-3 при 415 В и 690 В - 50 Гц.

В таблицах указаны возможные варианты выбора трансформаторов тока, способных обеспечить достаточно высокое значение уставки мгновенного размыкания (I): при отсутствии экспериментальных данных рекомендуется проверить, что соотношение между уставкой устройства защиты I (I_3) и уставкой устройства защиты L (I_1) соответствует соотношению:

$$I_3/I_1 = 12 \dots 15$$

Электронные расцепители PR122 и PR123 соответствуют требованиям международного стандарта IEC 60947-4-1, в частности, данные устройства обеспечивают защиту электродвигателей класса 10A, 10, 20 и 30. Расцепители PR122 и PR123 имеют температурную компенсацию и работают при потере фазы.

Преимущества защиты от замыкания на землю (функция G)

Защита от замыкания на землю (G) рекомендуется для:

- уменьшения опасности пожара;
- повышения уровня защиты электродвигателя и персонала в случае замыкания в машине.

Преимущества тепловой памяти

Целесообразность включения тепловой памяти (функция, предлагаемая расцепителями PR122 и PR123) следует рассматривать с точки зрения типа нагрузки. Включение тепловой памяти (которая делает электронное устройство защиты подобным механическому тепловому расцепителю) повышает уровень защиты электродвигателя при его повторном пуске после отключения из-за перегрузки.

Защита от падения напряжения

Устройство защиты от падения напряжения в системах управления асинхронными электродвигателями требует особого внимания, выполняя, среди прочего, две важные функции:

- предотвращение одновременного повторного пуска всех электродвигателей при восстановлении питания, связанного с риском обесточивания всей установки при срабатывании устройства защиты главного автоматического выключателя;
- предотвращение самопроизвольного повторного пуска электродвигателя, представляющего опасность для обслуживающего персонала и технологического процесса.

6/38 ABB SACE

Данная защита может быть обеспечена:

- расцепителем минимального напряжения;
 функцией защиты UV от падения напряжения расцепителя PR123.

l/ln	1.05	1.2	1.5	7.2	Класс
Тр	> 24	< 24	< 120 c	2 < t ≤ 10c	10A
			< 240 c	4 < t ≤ 10c	10
			< 480 c	6 < t ≤ 20c	20
			< 720 c	9 < t ≤ 30c	30

Электрод	цвигатель	Автоматиче	ский вык.	SACE Emax	Электронный расцепит		
Pe	le	Число операций (АС	С-3) Тип	Icu	In	Тип	TA
[кВт]	[A]	[Nº]		[kA]	[A]		[A]
220	408	10000	E1B	42	800	PR112/PR113	800
220	368	10000	E1B	42	800	PR122/PR123	630
250	415	10000	E1B	42	800	PR122/PR123	630
315	521	10000	E1B	42	1250	PR122/PR123	800
355	588	10000	E1B	42	1250	PR122/PR123	800
400	665	10000	E1B	42	1250	PR122/PR123	800
450	743	10000	E1B	42	1250	PR122/PR123	1000
500	819	10000	E1B	42	1600	PR122/PR123	1000
560	916	10000	E1B	42	1600	PR122/PR123	1250
630	1022	10000	E1B	42	1600	PR122/PR123	1250
220	368	10000	E1N	50	800	PR122/PR123	630
250	415	10000	E1N	50	800	PR122/PR123	630
315	521	10000	E1N	50	1250	PR122/PR123	800
355	588	10000	E1N	50	1250	PR122/PR123	800
400	665	10000	E1N	50	1250	PR122/PR123	800
450	743	10000	E1N	50	1250	PR122/PR123	1000
500	819	10000	E1N	50	1600	PR122/PR123	1000
560	916	10000	E1N	50	1600	PR122/PR123	1250
630	1022	10000	E1N	50	1600	PR122/PR123	1250
220	368	15000	E2N	65	1250	PR122/PR123	630
250	415	15000	E2N	65	1250	PR122/PR123	630
315	521	15000	E2N	65	1250	PR122/PR123	800
355	588	15000	E2N	65	1250	PR122/PR123	800
400	665	15000	E2N	65	1250	PR122/PR123	800
450	743	15000	E2N	65	1250	PR122/PR123	1000
500	819	12000	E2N	65	1600	PR122/PR123	1000
560	916	12000	E2N	65	1600	PR122/PR123	1250
630	1022	12000	E2N	65	1600	PR122/PR123	1250
220	368	12000	E3H	100	800	PR122/PR123	630
250	415	12000	E3H	100	800	PR122/PR123	630
315	521	12000	E3H	100	1250	PR122/PR123	800
355	588	12000	E3H	100	1250	PR122/PR123	800
400	665	12000	E3H	100	1250	PR122/PR123	800
450	743	12000	E3H	100	1250	PR122/PR123	1000
500	819	10000	E3H	100	1600	PR122/PR123	1000
560 630	916 1022	10000	E3H E3H	100	1600	PR122/PR123	1250

Коммутация и защита асинхронных электродвигателей

Электродвигатель		Автоматиче	ский вык	Электронный расцепитель			
Pe	le	Число операций (АС	C-3) Тип	lcu	lu	Тип	TA
[кВт]	[A]	[Nº]		[kA]	[A]		[A]
220	221	10000	E1B	36	800	PR122/PR123	630
250	249	10000	E1B	36	800	PR122/PR123	630
315	313	10000	E1B	36	800	PR122/PR123	630
355	354	10000	E1B	36	800	PR122/PR123	630
400	400	10000	E1B	36	800	PR122/PR123	630
450	447	8000	E1B	36	1000	PR122/PR123	800
500	493	8000	E1B	36	1000	PR122/PR123	800
560	551	8000	E1B	36	1250	PR122/PR123	800
630	615	8000	E1B	36	1250	PR122/PR123	800
220	221	15000	E2N	55	1000	PR122/PR123	630
250	249	15000	E2N	55	1000	PR122/PR123	630
315	313	15000	E2N	55	1000	PR122/PR123	630
355	354	15000	E2N	55	1000	PR122/PR123	630
400	400	15000	E2N	55	1000	PR122/PR123	630
450	447	15000	E2N	55	1000	PR122/PR123	800
500	493	15000	E2N	55	1000	PR122/PR123	800
560	551	15000	E2N	55	1000	PR122/PR123	800
630	615	15000	E2N	55	1250	PR122/PR123	800
220	221	12000	E3S	75	1000	PR122/PR123	630
250	249	12000	E3S	75	1000	PR122/PR123	630
315	313	12000	E3S	75	1000	PR122/PR123	630
355	354	12000	E3S	75	1000	PR122/PR123	630
400	400	12000	E3S	75	1000	PR122/PR123	630
450	447	12000	E3S	75	1000	PR122/PR123	800
500	493	12000	E3S	75	1000	PR122/PR123	800
560	551	12000	E3S	75	1000	PR122/PR123	800
630	615	12000	E3S	75	1250	PR122/PR123	800
220	221	12000	E3H	100	800	PR122/PR123	630
250	249	12000	E3H	100	800	PR122/PR123	630
315	313	12000	E3H	100	800	PR122/PR123	630
355	354	12000	E3H	100	800	PR122/PR123	630
400	400	12000	E3H	100	800	PR122/PR123	630
450	447	12000	E3H	100	1000	PR122/PR123	800
500	493	12000	E3H	100	1000	PR122/PR123	800
560	551	12000	E3H	100	1000	PR122/PR123	800

6/40 ABB SACE

Коммутация и защита конденсаторов

Эксплуатационные режимы работы автоматических выключателей при непрерывном питании конденсаторных батарей

В соответствии со Стандартами IEC 60831-1 и 60931-1 конденсаторы должны быть способны работать с номинальным током, действующее значение которого превышает номинальный ток конденсатора Icn в 1,3 раза. Данная рекомендация объясняется возможностью присутствия гармоник в напряжении питания.

Следует также иметь в виду, что емкость конденсаторов, соответствующая их номинальной мощности, имеет допуск +15%, и, таким образом, для выбора автоматических выключателей для коммутации конденсаторных батарей, значение номинального тока равняется:

 $ln = 1,3 \times 1,15 \times lnc = 1,5 \times lnc.$

Ток при подключении конденсаторных батарей

Подключение конденсаторных батарей можно сравнить с включением в условиях короткого замыкания, где включающая способность Ір принимает высокие пиковые значения, прежде всего, когда конденсаторные батареи подключаются параллельно с уже запитанными батареями. Значение Ір должно рассчитываться для каждой конкретной ситуации, т.к. оно зависит от конкретных условий цепи, и в некоторых случаях может достигать пиковых значений, равных 100-200 х Ісп длительностью 1-2 мс.

Данный факт необходимо принимать во внимание при выборе автоматических выключателей, которые должны иметь соответствующую включающую способность, и такую уставку расцепителя, которая не будет вызывать ложные срабатывания при подключении конденсаторной батареи.

Выбор автоматического выключателя

Используя информацию на табличке с техническими характеристиками трехфазной конденсаторной батареи:

Qn = номинальная мощность, квар,

Un = номинальное напряжение, В,

можно определить номинальный ток конденсаторной батареи следующим образом:

$$Inc = \frac{Qn \times 10^3}{\sqrt{3} \times Un} , A$$

Для автоматического выключателя следует проверить следующие

. Номинальный ток In > 1,5 Inc

Уставка защиты от перегрузки I1 = 1,5 x Inc

Уставка защиты от короткого замыкания I3 = OFF (ВЫКЛ.)

Отключающая способность в точке установки Icu ≥ Ik.

Коммутация и защита конденсаторов

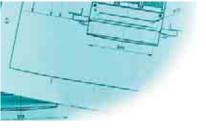
Таблица выбора автоматических выключателей для защиты и коммутации конденсаторов

Отключающая способность автоматического выключателя должна учитывать расчетное значение тока короткого замыкания в точке установки. Возможные типоразмеры указаны в таблице.

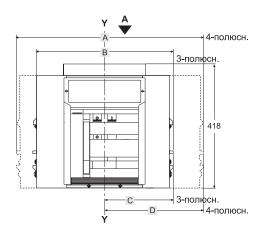
ко	аксимальн нденсатор и 50 Гц [к	ной бата		Автоматический выключатель	Номинальный ток трансфор-маторов тока	Номинальный ток конденсаторной батареи	Уставка защиты от перегрузки	Уставка защиты от короткого замыкания
400B	440B	500B	690B	Тип	In [A]	Inc [A]	I1 [A]	I3 [A]
578	636	722	997	E1 - E2 - E3	1250	834	1 x In	ОТКЛ
739	813	924	1275	E1 - E2 - E3	1600	1067	1 x ln	ОТКЛ
924	1017	1155	1594	E2 - E3	2000	1334	1 x ln	ОТКЛ
1155	1270	1444	1992	E3	2500	1667	1 x ln	ОТКЛ
1478	1626	1848	2550	E3 - E4 - E6	3200	2134	1 x ln	ОТКЛ

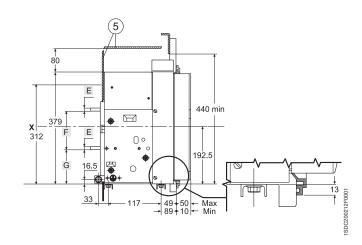
Примечание


Автоматические выключатели E2L и E3L для коммутации конденсаторных батарей не подходят.


6/42 ABB SACE

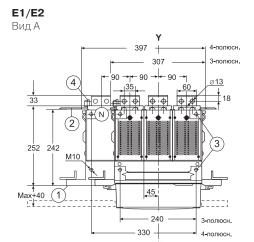
Стационарный автоматический выключатель
Выкатной автоматический выключатель
Механическая блокировка7/15
Аксессуары

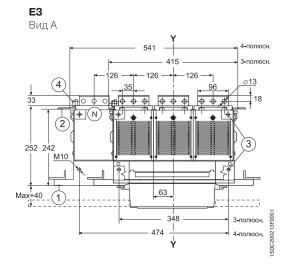




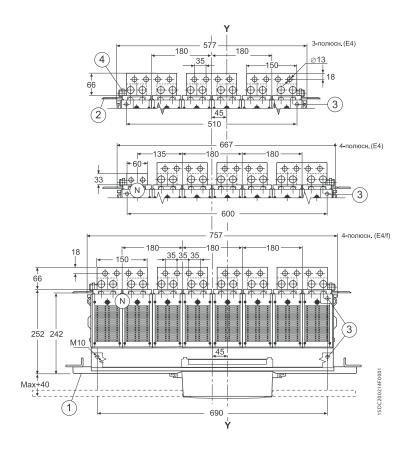
Стационарный автоматический выключатель

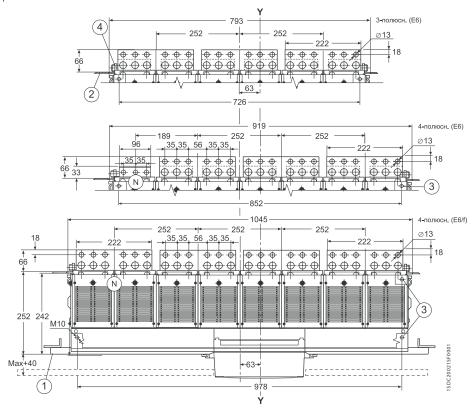
Базовое исполнение

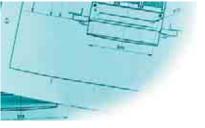

с горизонтальными выводами для подключения сзади



Обозначение

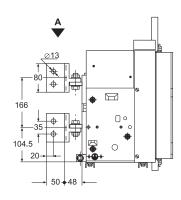

- 1)Внутренний край двери
- 2 Разделительная пластина (если предусмотрено)
- 3 Монтажные отверстия М10 для выключателя (используйте винты М10)
- (4) Винт М12 (Е1, Е2, Е3) или 2 винта М12 (Е4, Е6) для заземления (входят в комплект стандартной поставки)
- 5 Изолирующая стенка или изолированная металлическая пластина



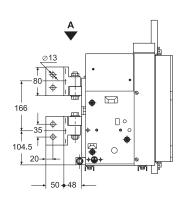

	Α	В	С	D	E	F	G
E1	386	296	148	148	130		117.5
E2	386	296	148	148	26	114	117.5
E3	530	404	202	202	26	114	117.5
E4	656	566	238	328	26	166	91.5
E4/f	746	-	-	328	26	166	91.5
E6	908	782	328	454	26	166	91.5
E6/f	1034	-	-	454	26	166	91.5

Е4 Вид А

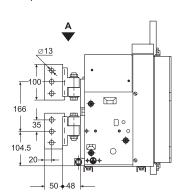
Е6 Вид А

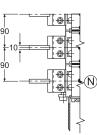


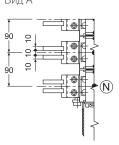
Стационарный автоматический выключатель

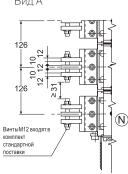

Базовое исполнение

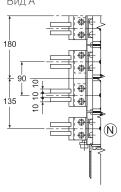
с вертикальными выводами для подключения сзади

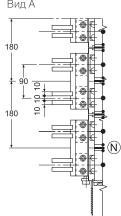


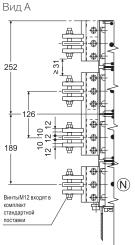

E2/E4

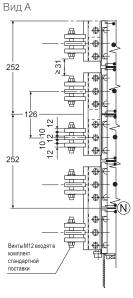

E3/E6



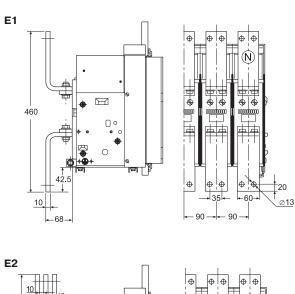


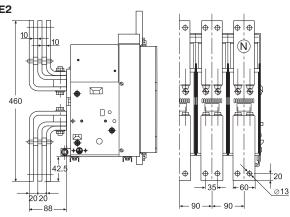

ЕЗ Вид А

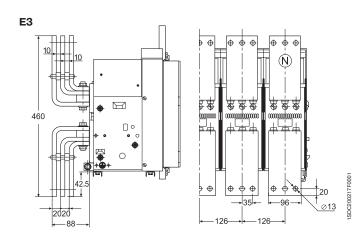


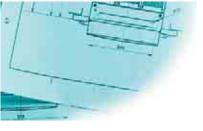

E4/f Вид А

E6

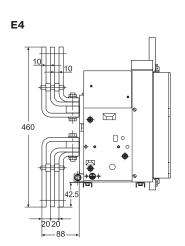


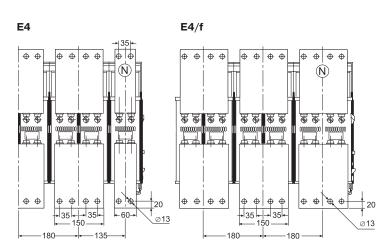

E6/f

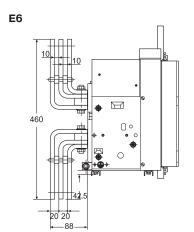


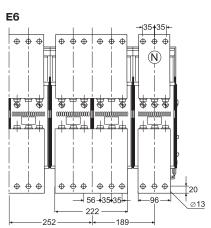

Исполнение с

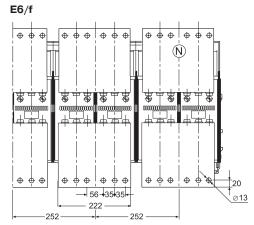
выводами для подключения спереди

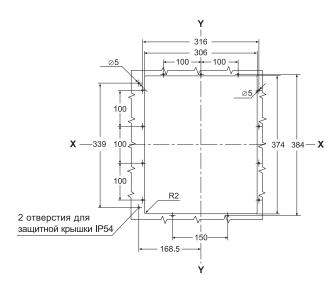




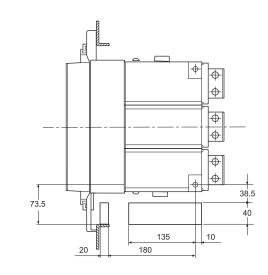

Стационарный автоматический выключатель


Исполнение с

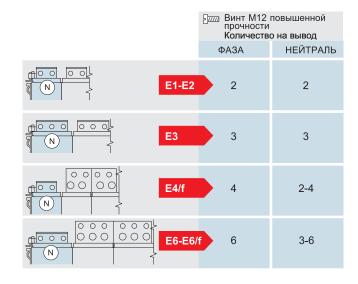

выводами для подключения спереди


DC200218F0001

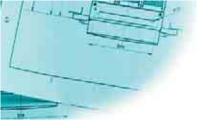
7/6


Габаритные размеры отделения

500 Глубина 242 Мин 282 Макс 3-полюсн. 4-полюсн.

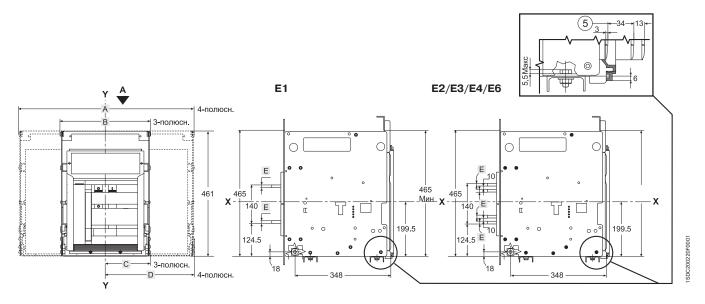

Отверстия в двери отделения

Отверстия для пропускания гибких тросиков для механических блокировок

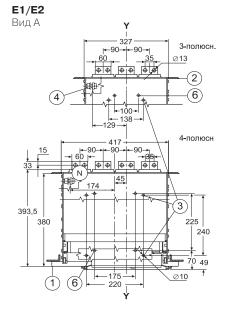


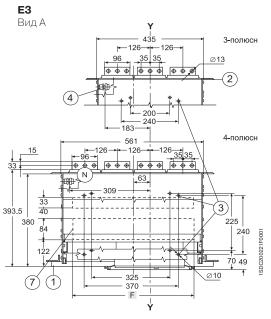
Момент затяжки для основных выводов - 70 Hm Момент затяжки для винтов заземления - 70 Hm

	Α	В
E1	400	490
E2	400	490
E3	500	630
E4	700	790
E4/f	-	880
E6	1000	1130
E6/f	-	1260

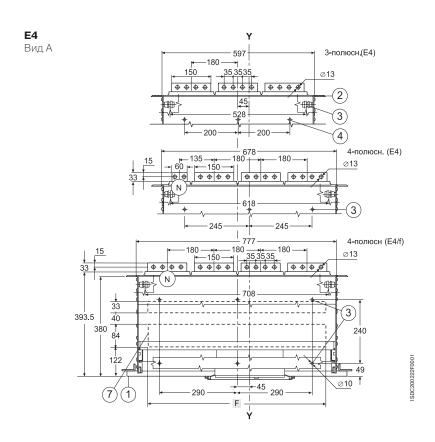

1SDC200219F0001

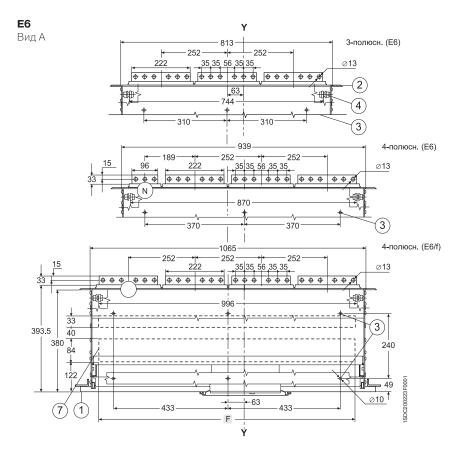
Выкатной автоматический выключатель

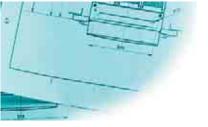

Базовое исполнение


с горизонтальными выводами для подключения сзади

Обозначение

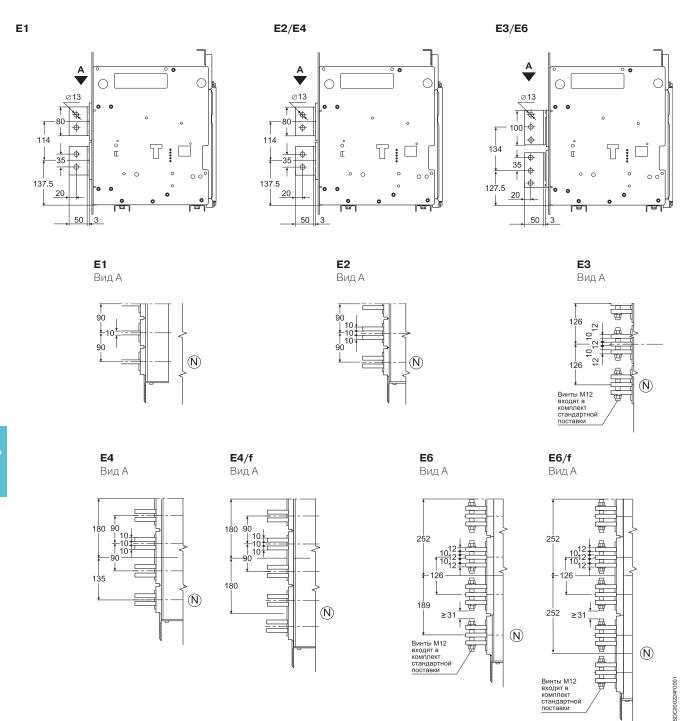

- 1 Внутренний край двери
- 2 Разделительная пластина (если предусмотрено)
- (з) Монтажные отверстия Ø 10 для фиксированной части (используйте винты М8)
- 4 Винт М12 (Е1, Е2, Е3) или 2 винта М12 (Е4, Е6) для заземления (входят в комплект стандартной поставки)
- (5) Расстояние от положения "подключен для проверки" до положения "изолирован"
- Дополнительные отверстия с шагом 25 мм для крепления фиксированной части
- фиксированнои части
 Вентиляционные отверстия на выключателе





	Α	В	С	D	Ε	F	-
						3-полюсн.	4-полюсн.
E1	414	324	162	162	10	_	-
E2	414	324	162	162	8	_	-
E3	558	432	216	216	8	370	490
E4	684	594	252	342	8	530	610
E4/f	774	-	-	342	8	-	700
E6	936	810	342	468	8	750	870
E6/f	1062	-	-	468	8	-	1000

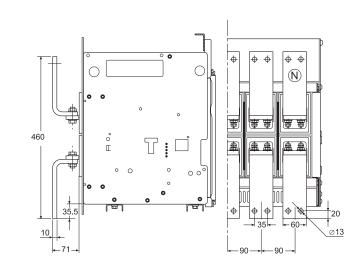
7/8



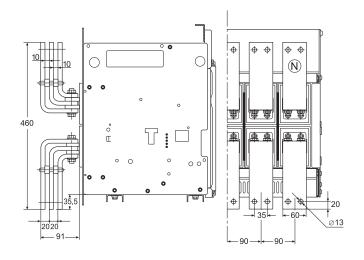
Выкатной автоматический выключатель

Базовое исполнение

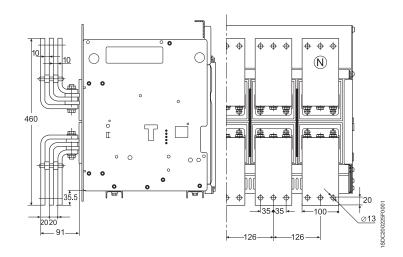
с вертикальными выводами для подключения сзади

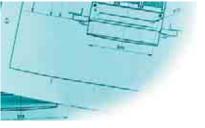


7/10


Исполнение с

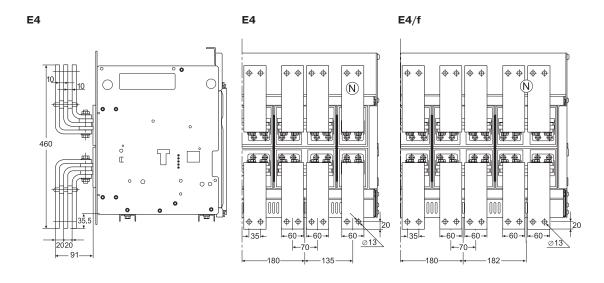
выводами для подключения спереди

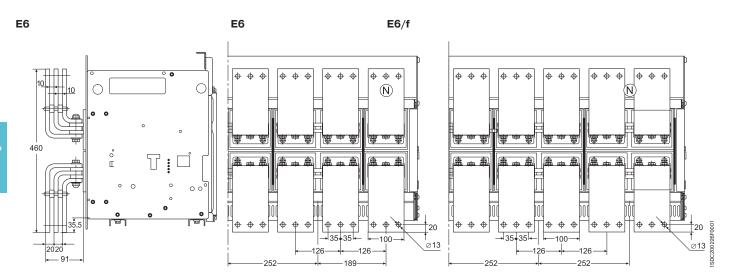

E2



E1

E3

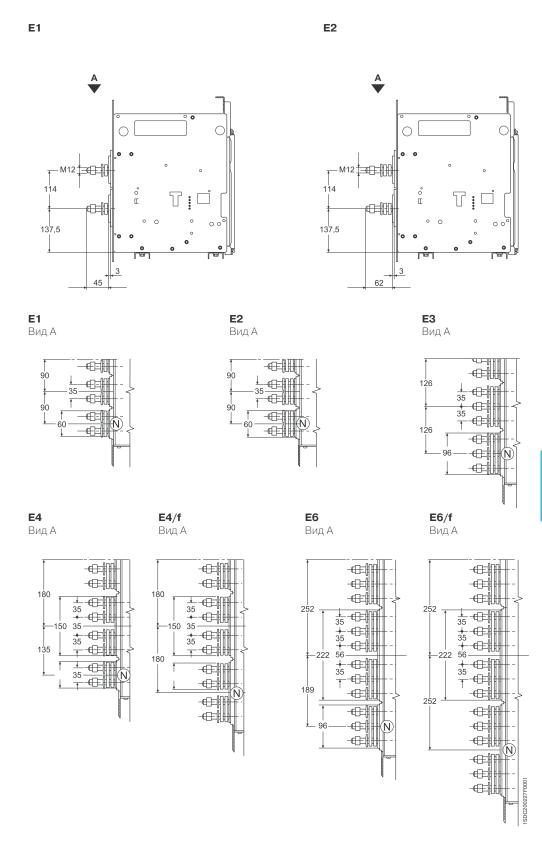


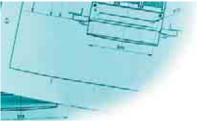


Выкатной автоматический выключатель

Исполнение с

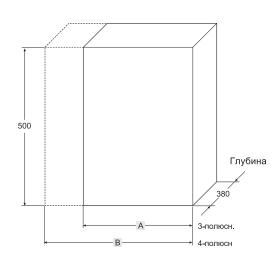
выводами для подключения спереди

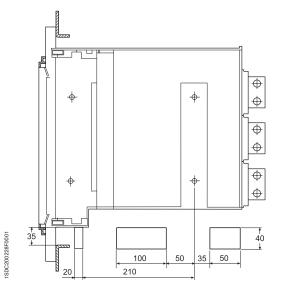




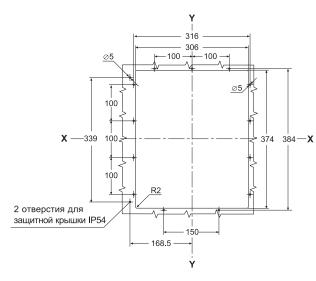
7/12 ABB SACE

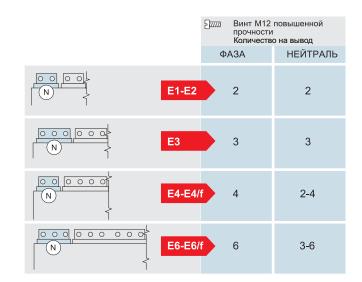
Исполнение с


плоскими выводами

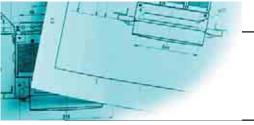


Выкатной автоматический выключатель


Габаритные размеры отделения


Отверстия для пропускания гибких тросиков для механических блокировок

Отверстия в двери отделения



Момент затяжки для крепежных винтов - 20 Hm Момент затяжки для основных выводов - 70 Hm Момент затяжки для винтов заземления - 70 Hm

	Α	В
E1	400	490
E2	400	490
E3	500	630
E4	700	790
E4/f	-	880
E6	1000	1130
E6/f	-	1260

7/14 ABB SACE

Механическая блокировка

Монтаж блокировок

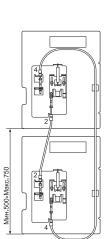
Тип А

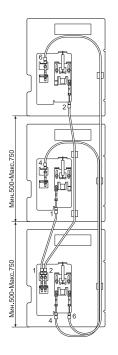
Горизонтально Вертикально

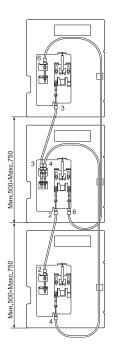
Тип В

(аварийная блокировка внизу) Горизонтально Вертикально

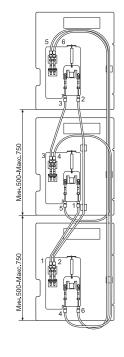
Тип В

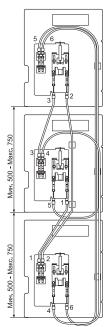

(аварийная блокировка в середине) Горизонтально Вертикально

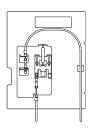

Тип В


(аварийная блокировка вверху) Горизонтально Вертикально

Тип С


Горизонтально Вертикально





Тип D

Горизонтально Вертикально

Горизонтальные блокировки

Максимальное расстояние между двумя блокировками составляет 1200 мм. Тросики проходят под неподвижными частями, повторяя способ соединений, приведенный для вертикальных автоматических выключателей.

Избыточную часть тросика сверните в одно полное кольцо или в виде буквы "омега", как изображено на рисунке.

ABB SACE

Примечания

рованных

7/7 и 7/14.

плоскости

уменьшите

соответствующие

При установке блокировок между двумя автоматическим выключателями необходимо просверлить

(через распределительный щит) в монтажной поверхности для стационарных автоматических

выключателей или для фикси-

частей

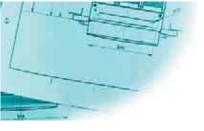
автоматических выключателей с тем, чтобы пропустить гибкие тросики, соблюдая размеры,

приведенные на рисунках на стр.

При выполнении вертикальных

блокировок выровняйте тросики по правой стороне в вертикальной

ДО

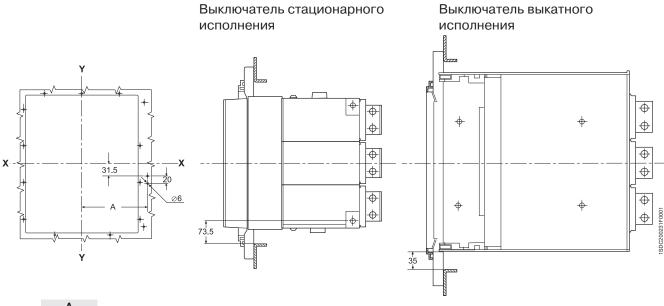

изгиб

(радиус – 70 мм). Суммарное значение всех углов изгибов, которые проходит тросик, не должно превышать 720°.

отверстия

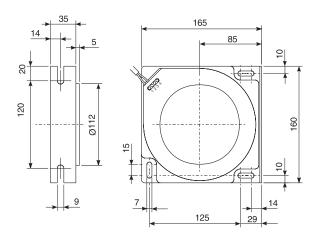
выкатных

тросиков

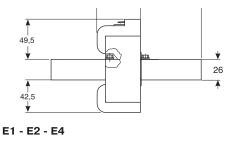

Аксессуары

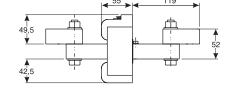
Механическая

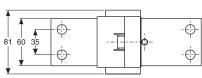
блокировка двери шкафа

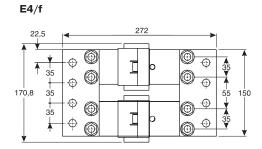

Отверстия в двери шкафа

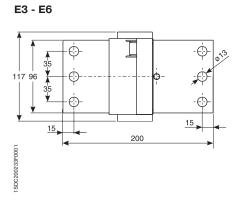
Минимальное расстояние между автоматическим выключателем и стенкой распределительного щита


	А 3-полюсн, 4-полюсн,				
	o-nonloch.	4-1107/10CH.			
E1	180	180			
E2	180	180			
E3	234	234			
E4	270	360			
E4/f	-	360			
E6	360	486			
E6/f	-	486			


Униполярный тороид




Трансформатор тока


для внешнего проводника нейтрали

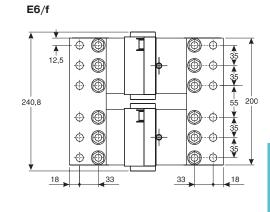
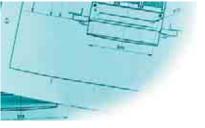
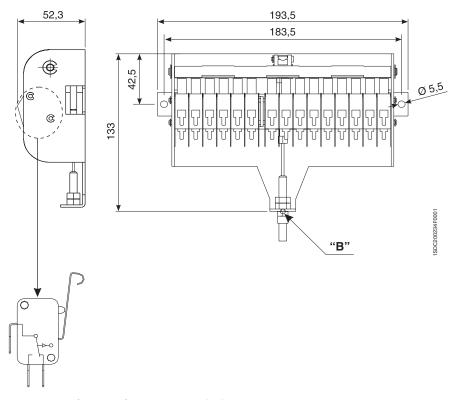
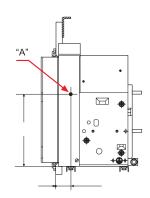



ABB SACE 7/17

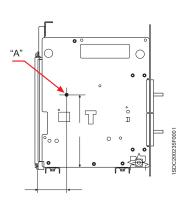

Габаритные размеры

Аксессуары

Электрическая сигнализация

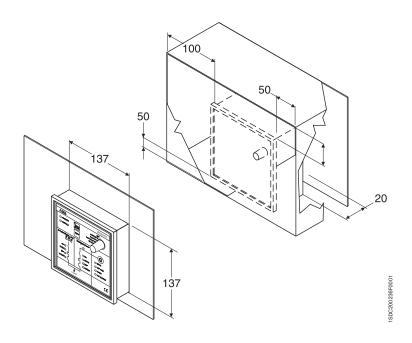

состояния
"включен/отключен"
автоматического
выключателя

15 внешних дополнительных контактов



Имеется гибкий кабель длиной 650 мм для соединения между точками "А" и "В".

Выключатель стационарного исполнения



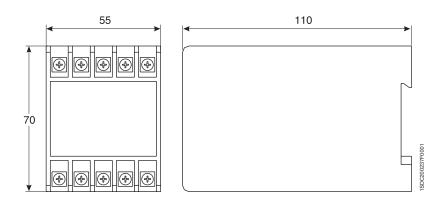
Выключатель выкатного исполнения

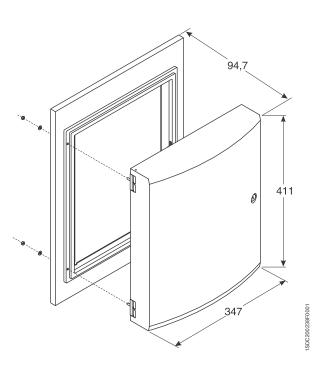
7/18 ABB SACE

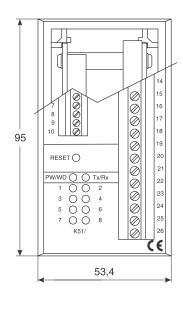
ATS010

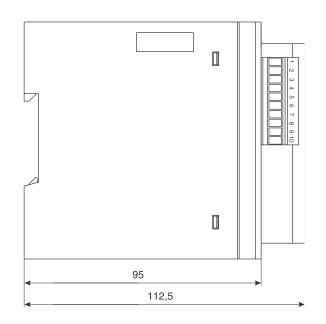
Электронное

устройство задержки по времени




ABB SACE **7**/19


Габаритные размеры


Аксессуары

Защитная крышка IP54

Блок PR021/K

7

7/20

ООО "СвязьЭнергоСервис" - www.comens.ru

Содержание

ABB SACE 8/1

Обозначения на схемах - автоматические выключатели

Внимание!

Перед установкой автоматического выключателя внимательно прочитайте примечания F и O к электрическим схемам.

Рабочее состояние на схемах

Электрические схемы приведены для следующих условий:

- автоматический выключатель выкатного исполнения разомкнут и установлен в корзину;
- цепи обесточены
- расцепители в несработанном состоянии;
- пружины механизма включения не взведены.

Варианты исполнения

Несмотря на то, что электрические схемы приведены для выкатных автоматических выключателей, они также применимы и для стационарных автоматических выключателей.

Выключатели стационарного исполнения

Цепи управления располагаются между выводами XV (разъем X отсутствует).

Для данного варианта исполнения компоненты, показанные на рисунках 31 и 32, не предусмотрены.

Выключатели выкатного исполнения

Цепи управления располагаются между полюсами разъема X (клеммник XV отсутствует).

Вариант исполнения без расцепителя сверхтоков

Для данного варианта исполнения компоненты, показанные на рисунках 13, 14, 41, 42, 43, 44, 45, 46 и 47, не предусмотрены.

Вариант исполнения с микропроцессорным расцепителем PR121/P

Для данного варианта исполнения компоненты, показанные на рисунках 42, 43, 44, 45, 46 и 47, не предусмотрены.

Вариант исполнения с микропроцессорным расцепителем PR122/P

Для данного варианта исполнения компоненты, показанные на рисунке 41, не предусмотрены.

Вариант исполнения с микропроцессорным расцепителем PR123/P

Для данного варианта исполнения компоненты, показанные на рисунке 41, не предусмотрены.

Обозначения

- = номер рисунка электрической схемы
- = см. примечание, обозначенное соответствующей буквой
- А1 = аксессуары для автоматических выключателей
- АЗ = аксессуары для фиксированной части автоматического выключателя (только для выключателей выкатного исполнения)
- А4 = пример коммутационного оборудования и соединений для управления и передачи сигналов за пределами автоматического выключателя
- AY = блок SOR TEST UNIT (см. Примечание R)
- D = электронное устройство задержки срабатывания расцепителя минимального напряжения, вне автоматического выключателя
- F1 = плавкий предохранитель замедленного срабатывания
- К51 = микропроцессорный расцепитель PR121, PR122/P, PR123/P со следующими функциями защиты (см. Примечание G):
 - L защита от перегрузки с долговременной обратнозависимой задержкой срабатывания - уставка I1;
 - S защита от короткого замыкания с кратковременной обратнозависимой или независимой задержкой срабатывания уставка I2
 - І защита от короткого замыкания с мгновенным срабатыванием уставка ІЗ;
 - G защита от замыкания на землю с кратковременной обратнозависимой задержкой срабатывания - уставка 14;

ABB SACE

- K51/1...8 = Контакты сигнального блока PR021/K
- K51/GZin = Зонная селективность: вход для G-защиты или "обратный" вход для D-защиты (только при Uaux.

(DBin) и PR122/Р или PR123/Р)

K51/GZout = Зонная селективность: выход для G-защиты или "обратный" выход для D-защиты

(DBout) (только при Uaux. и PR122/Р или PR123/Р)

K51/IN1 = программируемый цифровой вход (только при Uaux. и PR122/P или PR123/P с модулем PR120/K)

K51/P1...P4 = программируемая электронная сигнализация (только при Uaux и PR122/P или PR123/P с модулем PR120/K)

К51/SZin = Зонная селективность: вход для S-защиты или "прямой" вход для D-защиты

(DFin) (только с Uaux. и PR122/ Р или PR123/P)

K51/SZout = Зонная селективность: выход для S-защиты или "прямой" выход для D-защиты (только с (DFout) Uaux. и PR122/P или PR123/P) K51/YC = управляющий сигнал на включение от микропроцессорного расцепителя PR122/P или PR123/P с модулем PR120/D-M K51/YO = управляющий сигнал на выключение от микропроцессорного расцепителя PR122/P или PR123/P с модулем PR120/D-M М = электродвигатель взвода включающих пружин = автоматический выключатель Q/1...27 = дополнительные контакты автоматического выключателя S33M/1...3 = концевые выключатели электродвигателя взвода включающих пружин S43 = переключатель дистанционного/местного управления S51 = контакт сигнализации отключения автоматического выключателя из-за срабатывания расцепителя защиты Автоматический выключатель можно замкнуть только после нажатия на кнопку сброса или после подачи напряжения на катушку дистанционного сброса (если есть). S75E/1...4 = контакт сигнализации положения "выкачен" (только для автоматических выключателей выкатного исполнения) S75I/1...4 = контакт сигнализации положения "установлен" (только для автоматических выключателей выкатного исполнения) S75T/1; 2 = контакт сигнализации положения "выкачен для тестирования" (только для автоматических выключателей выкатного исполнения) SC = кнопка или контакт для включения автоматического выключателя = кнопка или контакт для выключения автоматического выключателя SO1 = кнопка или контакт для выключения автоматического выключателя с задержкой срабатывания SO2 = кнопка или контакт для выключения автоматического выключателя с мгновенным срабатыванием SR = кнопка или контакт для сброса автоматического выключателя TI/L1 = трансформатор тока фазы L1 = трансформатор тока фазы L2 TI/L3 = трансформатор тока фазы L3 Uaux. = напряжение вспомогательного источника питания (см. примечание F) UI/L1 = датчик тока (катушка Роговского) фазы L1 UI/L2 = датчик тока (катушка Роговского) фазы L2 UI/L3 = датчик тока (катушка Роговского) фазы L3 = датчик тока (катушка Роговского), установленный на проводнике нейтрали UI/N = датчик тока (катушка Роговского), установленный на проводе, соединяющем нейтральную точку TI/O звезды трансформатора СН/НН с заземлением (см. примечание G) W1 = последовательный интерфейс с системой управления (внешняя шина): интерфейс EIA RS485 (см. примечание Е) W2 = последовательный интерфейс с аксессуарами расцепителей PR121/P, PR122/P и PR123/P (внутренняя шина) = разъем вспомогательных цепей автоматического выключателя выкатного исполнения X1...X7 = разъемы для аксессуаров автоматического выключателя XF = клеммная коробка контактов положения автоматического выключателя выкатного исполнения (на фиксированной части автоматического выключателя) = разъем для основных цепей расцепителей PR121/P, PR122/P и PR123/P XK1 XK2 - XK3 = разъемы для вспомогательных цепей расцепителей PR121/P, PR122/P и PR123/P XO = разъем расцепителя YO1 ΧV = клеммная коробка для вспомогательных цепей автоматического выключателя стационарного исполнения

= второе реле отключения (см. примечание Q) = катушка электрического сброса автоматического выключателя

ΥIJ = расцепитель минимального напряжения (см. примечания В и Q)

= реле отключения от расцепителя защиты

YC

ΥO

YO 1

YO2

= реле включения

= реле отключения

MBB4SMCF 8/3

Обозначения на схемах автоматические выключатели

Оп	иса	ние рисунков
Рис.		= Цепь электродвигателя взвода включающих пружин.
Рис.		= Цепь реле включения.
Рис.	4	= Pene отключения.
Рис.	6	= Мгновенный расцепитель минимального напряжения(см. примечания В и Q).
Рис.	7	 Расцепитель минимального напряжения с электронным устройством задержки срабатывания, вне автоматического выключателя (см. примечания В и Q).
Рис.	8	= Второе реле отключения (см. примечание Q).
Рис.	11	= Контакт сигнализации взведенного состояния пружин.
Рис.	12	 Контакт сигнализации подачи питания на расцепитель минимального напряжения (см. примечания В и S).
Рис.	13	 Контакт сигнализации отключения автоматического выключателя из-за срабатывания расцепителя защиты. Замкнуть автоматический выключатель можно после нажатия на кнопку сброса.
Рис.	14	 Контакт сигнализации отключения автоматического выключателя из-за срабатывания расцепителя защиты и катушка электрического сброса. Замкнуть автоматический выключатель можно после нажатия на кнопку сброса или подачи питания на катушку.
Рис.	21	= Первый набор дополнительных контактов автоматического выключателя.
Рис.	22	= Второй набор дополнительных контактов автоматического выключателя (для расцепителей PR122/P и PR123/P, см. примечание V).
Рис.	23	= Третий набор внешних дополнительных контактов автоматического выключателя.
Рис.	31	 Первый набор контактов положения автоматического выключателя (установлен, выкачен для тестирования, выкачен).
Рис.	32	= Второй набор контактов положения автоматического выключателя (установлен, выкачен для тестирования, выкачен).
Рис.	41	= Дополнительные цепи расцепителя PR121/P (см. примечание F).
Рис.	42	= Дополнительные цепи расцепителей PR122/P и PR123/P (см. примечание F, M и V).
Рис.	43	 Цепи блока измерения PR120/V расцепителей PR122/P и PR123/P с внутренним подключением к автоматическому выключателю (для PR122/P поставляется отдельно) (см. примечания Т и U).
Рис.	44	 Цепи блока измерения PR120/V расцепителей PR122/P и PR123/P с внешним подключением к автоматическому выключателю (для PR122/P поставляется отдельно) (см. примечания О и U).
Рис.	45	= Цепи блока PR120/D-M расцепителей PR122/P и PR123/P (поставляется отдельно) (см. примечание E).
Рис.	46	= Цепи блока PR120/K расцепителей PR122/P и PR123/P (подключение 1)

(поставляется отдельно) (см. примечание V). Цепи блока PR 120/К расцепителей PR 122/Р и PR 123/Р (подключение 2) (поставляется отдельно) (см. примечание V).
 Блок SOR TEST UNIT (см. примечание R). Рис. 47

Рис. 61

= Цепи сигнального блока PR021/K.

Несовместимость

Цепи, указанные на следующих рисунках, не предусмотрены одновременно на одном и том же автоматическом выключателе.

6 - 7 - 8

13 - 14

22 - 46 - 47

43 - 44

8/4 ABB SACE

Примечания

- А) Автоматический выключатель оснащается только тем дополнительным оборудованием, которое указывается в подтверждении заказа ABB SACE.
- В) Расцепитель минимального напряжения поставляется для работы с питанием от шины на стороне питания автоматического выключателя или от независимого источника питания. Включение автоматического выключателя возможно только при подаче питания на расцепитель (предусмотрена механическая блокировка включения).
 - В том случае, если один и тот же источник питания используется как для электромагнита включения, так и для расцепителей минимального напряжения, а автоматический выключатель требует автоматического включения при возобновлении питания вспомогательного источника, то между моментом приема сигнала расцепителем минимального напряжения и подачей питания на реле включения необходимо обеспечить задержку 30 мс. Данную задержку можно обеспечить за счет применения цепи вне автоматического выключателя, состоящей из постоянно замкнутого контакта, показанного на рис. 12, и реле с задержкой срабатывания.
- E) Для подключения последовательного интерфейса EIA RS485 см. документацию ITSCE RH0298 по передаче данных MODBUS.
- F) Вспомогательное напряжение питания Uaux позволяет запускать все функции расцепителей PR121/P, PR122/P и PR123/P. При выборе Uaux, изолированного от заземления в соответствии с IEC 60950 (UL 1950) или аналогичными стандартами, обеспечивающими величину синфазного тока или тока утечки (см. IEC 478/1, CEI 22/3) не более 3.5 мА (IEC 60364-41 и CEI 64-8) необходимо использовать "гальванически разделенные преобразователи".
- G) Функция защиты от замыкания на землю с помощью расцепителей PR122/P и PR123/P обеспечивается за счет применения датчика тока, расположенного на проводе, соединяющем нейтральную точку звезды трансформатора CH/HH с заземлением.
 - Соединения между выводами 1 и 2 (или 3) трансформатора тока UI/O и выводами Т7 и Т8 разъема X (или XV) должны быть выполнены в виде двухпроводного экранированного витого кабеля (см. руководство пользователя) длиной не более 15 м. Экранирование должно быть заземлено на стороне автоматического выключателя и на стороне датчика тока.
- N) При использовании расцепителей PR122/P и PR123/P подключения к вводам и выводам зонной селективности должны быть выполнены в виде двухпроводного экранированного витого кабеля (см. руководство пользователя) длиной не более 300 м. Экранирование должно быть заземлено на стороне вхола селективности.
- О) Для подключения систем с номинальным напряжением ниже 100 В или выше 690 В следует применять трансформатор напряжения (выполните подключение в соответствии со схемами, приведенными в руководстве).
- Р) При использовании расцепителей PR122/P и PR123/P с блоком PR120/D-M питание катушек YO и YC не должно сниматься с сети электроснабжения. Управлять катушками можно непосредственно с контактов K51/YO и K51/YC с максимальным напряжением 60 В DC, 240-250 В AC.
- Q) В качестве альтернативы расцепителю минимального напряжения можно установить второе реде отключения.
- R) Применение блока SOR TEST UNIT вместе с реле отключения (YO) гарантируется при 75% Uaux самого реле отключения.
 - При включении контакта питания YO (короткое замыкание на выводах 4 и 5) блок SOR TEST UNIT не может определить состояние катушки. Следовательно:
 - для постоянно запитанной катушки сигналы TEST FAILED (ДИАГНОСТИКА НЕ ВЫПОЛНЕНА) И ALARM (АВАРИЯ) будут активированы:
 - в случае если команда на выключение является импульсной, то сигнал TEST FAILED может быть выдан в то же самое время. В этом случае сигнал TEST FAILED фактически является аварийным сигналом, но только при условии, что он горит более 20 с.
- S) Так же возможен вариант исполнения с нормально замкнутым контактом.
- Т) Подключение контакта 1 разъема XK5 к внутреннему нейтральному проводу обеспечивается в четырехполюсных автоматических выключателях, в то время как контакт 1 разъема XK5 подключается к контакту T1 разъема X (или XV) для трехполюсных автоматических выключателей.
- U) Питание измерительного блока PR120/V всегда осуществляется через расцепитель PR123/P.
- V) При использовании схемы, приведенной на рис. 22 (второй набор дополнительных контактов), одновременно с расцепителем PR122/P или PR123/P, контакты зонной селективности, показанные на рис. 42 (K51/Zin, K51/Zout, K51/Gzin и K51/Gzout), не подключаются. Кроме того, установка блока PR120/K, приведенного на рис. 46 и 47, невозможна.

ABB SACE 8/5

Обозначения на схемах - Устройство автоматического ввода резерва ATS010

Рабочее состояние, показанное для устройства автоматического ввода резерва ATS010

Принципиальные электрические схемы указаны для следующих условий:

- автоматический выключатель выкатного исполнения разомкнут и установлен в корзину #;
- авария генератора отсутствует;
- пружины включения не взведены;
- реле в несработанном состоянии *;
- ATS010 не запитано;
- генератор находится в автоматическом режиме и не запущен;
- коммутация генератора разрешена;
- цепи обесточены;
- логика включена через предусмотренный для этой цели вход (вывод 47).
- # На текущей схеме приведены автоматические выключатели выкатного исполнения, но она также применима и для стационарных автоматических выключателей: вспомогательные цепи автоматических выключателей соединены не с разъемом X, а с клеммной коробкой XV; соедините вывод 17 с выводом 20 и вывод 35 с выводом 38 на устройстве ATSO10.
- * На текущей схеме приведены автоматические выключатели с расцепителями защиты, но она также применима и для автоматических выключателей без расцепителей защиты: соедините вывод 18 с выводом 20 и вывод 35 с выводом 37 на устройстве ATSO10.
- Ф На текущей схеме приведены четырехполюсные автоматические выключатели, но она также применима и для двухполюсных автоматических выключателей: для подвода напряжения от основного источника питания на устройство ATS010 используйте только выводы 26 и 24; также вместо четырехполюсного вспомогательного автоматического выключателя защиты используйте двухполюсный выключатель Q61/2.

Обозначение

А1 = Компоненты автоматического выключателя

A = Устройство ATS010 для автоматической коммутации двух автоматических выключателей

F1 = Плавкий предохранитель замедленного срабатывания

К1 = Вспомогательный контакт К2 = Вспомогательный контакт

K51/Q1 = Расцепитель защиты резервной линии * K51/Q2 = Расцепитель защиты основной линии *

М = Электродвигатель взведения пружин включения Q/1 = Дополнительный контакт автоматического выключателя Q1 = Автоматический выключатель резервной линии Q2 = Автоматический выключатель основной линии

Q61/1-2 = Термомагнитные автоматические выключатели защиты вспомогательных цепей @

\$11...\$16 = Сигнальные контакты входных сигналов устройства ATS010

S33M/1 = Концевой контакт пружин включения

S51 = Контакт сигнализации отключения автоматического выключателя из-за срабатывания

расцепителя защиты*

S75I/1 = Контакт сигнализации автоматического выключателя выкатного исполнения, установленного в

корзину #

ТІ/ ... = Трансформаторы тока для питания расцепителей защиты

= Разъем вспомогательных цепей автоматического выключателя выкатного исполнения

XF = Клеммная коробка контактов положения автоматического выключателя выкатного исполнения XV = Клеммная коробка вспомогательных цепей стационарного автоматического выключателя

YC = Реле включения YO = Реле отключения

Примечание

 А) Вспомогательные цепи автоматических выключателей приведены на электрической схеме автоматического выключателя/аксессуаров. Необходимы компоненты, приведенные на следующих рисунках: 1 - 2 - 4 - 13 (только при наличии расцепителя защиты) - 21 - 31 (только для автоматических выключателей выкатного исполнения)

8/6 ABB SACE

Обозначения и символы на электрических схемах (Стандарты IEC 60617 и CEI 3-14 ... 3-26)

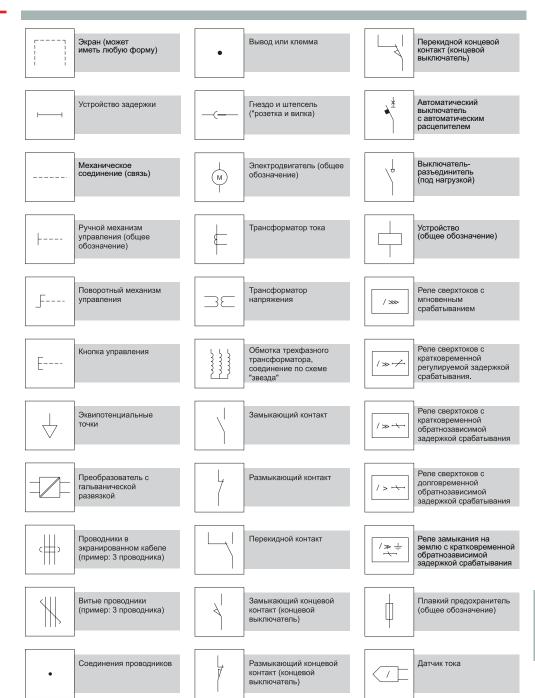
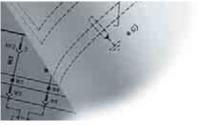
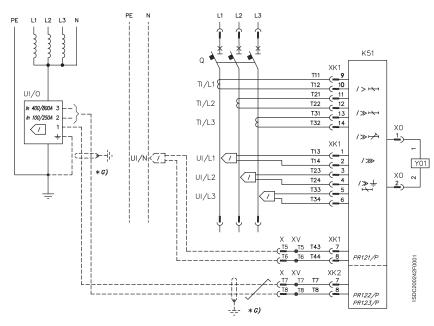
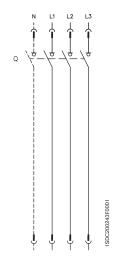
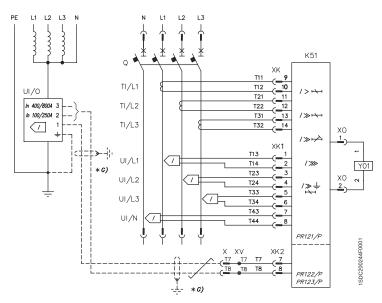




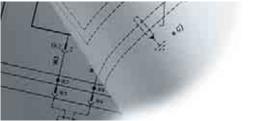
ABB SACE 8/7



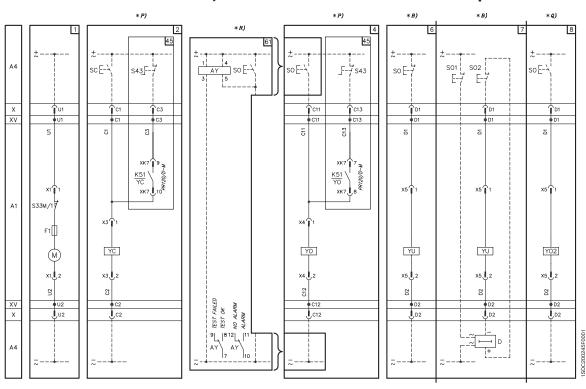

Автоматические выключатели

Рабочее состояние

Трехполюсный автоматический выключатель с микропроцессорным расцепителем PR121/P, PR122/P или PR123/P

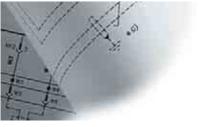


Трех- или четырехполюсный выключатель-разъединитель

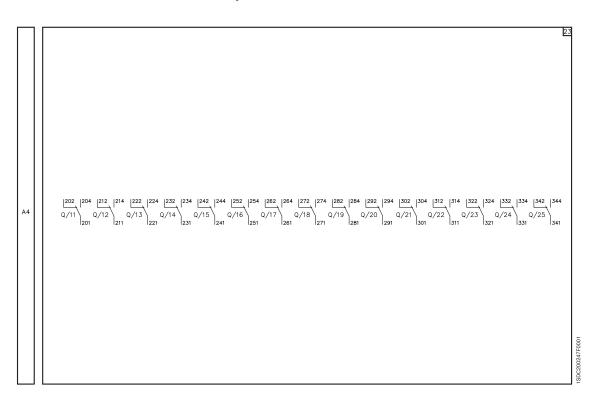

Четырехполюсный автоматический выключатель с микропроцессорным расцепителем PR121/P, PR122/P или PR123/P

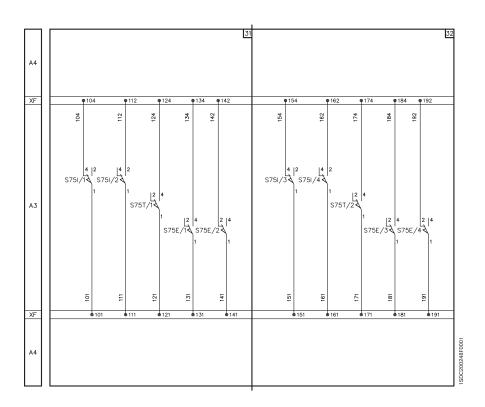
8/8 ABB SACE

Электрические аксессуары

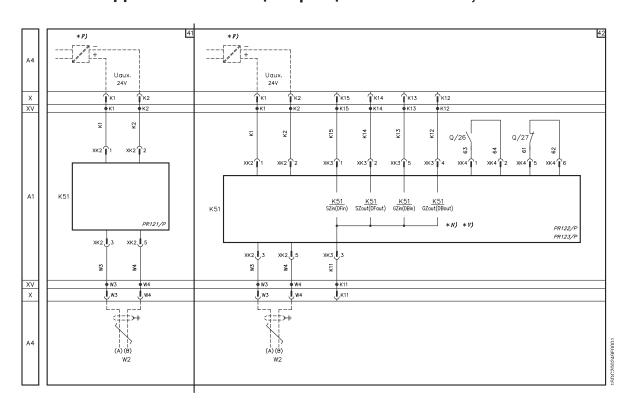

Механизм электродвигателя, реле отключения, включения и минимального напряжения

Контакты сигнализации


			*B) *S)				***/)
Γ		11	12	13	14	2	22
A	.4				* sr E\		
-	×	737	D13	Ŷ96 Ŷ98	1 96 1 98 1 R1	↑13 ↑11 ↑23 ↑21	↑33-K13 ↑31-K15 ↑43-K9 ↑41-K11 ↑53-K5 ↑51-K7
Х	.V	• 37	D13	96 98	●96 ●98 ●R1	• 13 • 11 • 23 • 21	◆33-K13 ◆31-K15 ◆43-K9 ◆41-K11 ◆53-K5 ◆51-K7
		37	013	96 88	98 88	23 23 23	33-K13 31-K15 43-K9 41-K11 41-K11 51-K7
4	A1	x2 1 1	x6 1 1	X7 1 2 1 3 S51	X7 2 13 S51	0/1\ 0/2\ 0/3\ 0/4\	0/5 0/6 0/7 0/8 0/9 0/10
		X2 J 2	X6 1 2	X7. 1	X7 U1 YR		
		88	410	98	89 87 82	22 24 25	32-K12 32-K14 44-K8 42-K10 52-K6
Х		9 38	● D14	95	● 95	• 14 • 12 • 24 • 22	● 34-K12 ● 32-K14 ● 44-K8 ● 42-K10 ● 54-K4 ● 52-K6
- [:	×		. I D14	. ↓95	↓ 95 ↓ R2	U14 U12 U24 U22	Ů 34-K12 Ů 32-K14 Ů 44-K8 Ů 42-K10 Ů 54-K4 Ů 52-K6
А	.4				~		


ABB SACE 8/9

Электрические аксессуары


Контакты сигнализации

8/10 ABB SACE

Дополнительные цепи расцепителей PR121, PR122 и PR123

Измерительный блок PR120/V

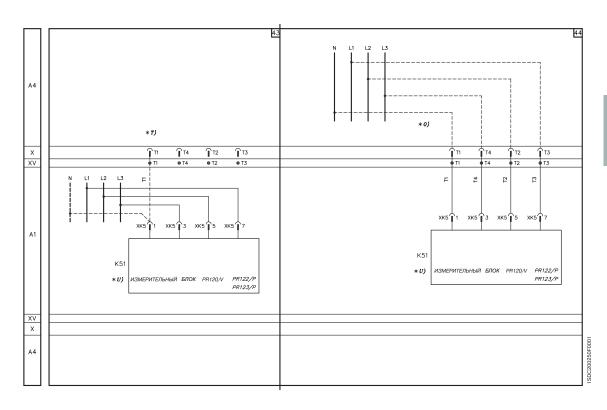
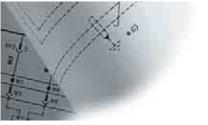
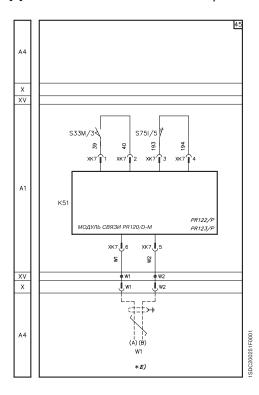
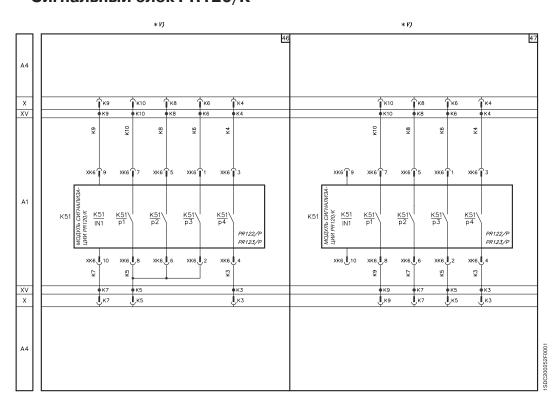




ABB SACE 8/11



Электрические аксессуары

Диалоговый блок PR120/D-M

Сигнальный блок PR120/K

8/12 ABB SACE

Сигнальный блок PR021/K

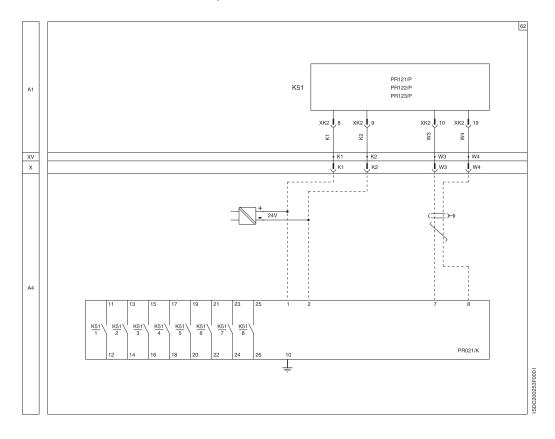
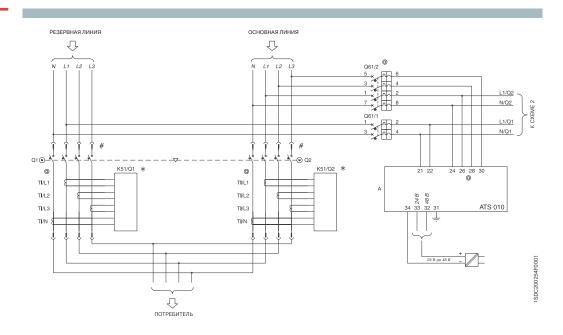
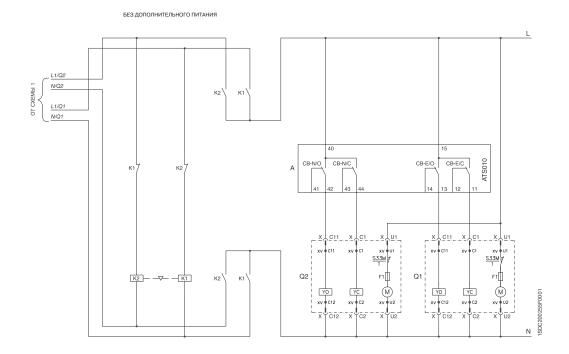
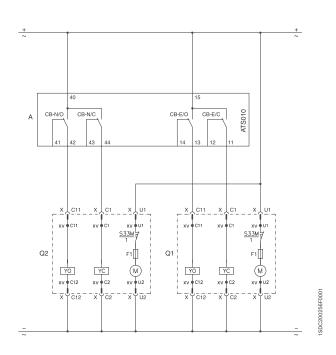




ABB SACE **8**/13


Устройство автоматического ввода резерва ATS010

8/14 ABB SACE

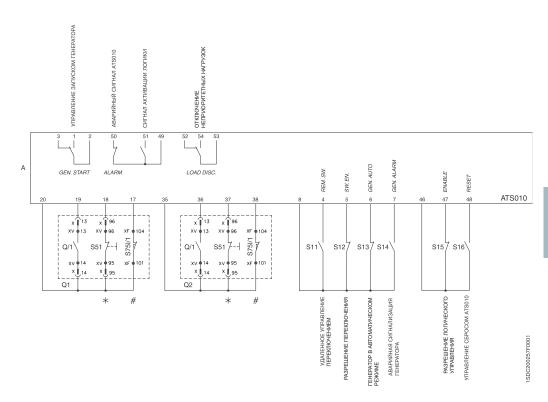
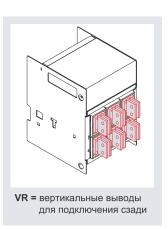
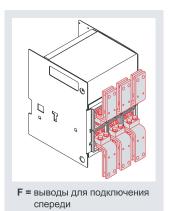


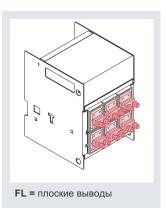
ABB SACE 8/15

Содержание

Общие сведения	9 /2
Автоматические выключатели SACE Emax	
SACE Emax E1	9/3
SACE Emax E2	
SACE Emax E3	9 /11
SACE Emax E4	9 /19
SACE Emax E6	9 /21
Автоматические выключатели SACE Emax с полноразмерным проводником нейтрали	
SACE Emax E4/f	9 /23
SACE Emax E6/f	9 /24
Выключатели-разъединители SACE Emax	
SACE Emax E1/MS	
SACE Emax E2/MS	
SACE Emax E3/MS	
SACE Emax E6/MS	
Выключатели-разъединители SACE Emax с полноразмерным проводником нейтрали	
SACE Emax E4/f MS	
SACE Emax E6/f MS	9 /35
Автоматические выключатели SACE Emax на напряжение до 1150 В АС	
SACE Emax E2/E	
SACE Emax E3/E	
SACE Emax E4/E	
SACE Emax E6/E	9 /38
Выключатели-разъединители SACE Emax на напряжение до 1150 В АС SACE Emax E2/E MS	0/20
SACE Emax E2/E MS	
SACE Emax E4/E MS	
SACE Emax E6/E MS	
Выключатели-разъединители SACE Emax на напряжение до 1000 В DC SACE Emax E1/E MS	0/42
SACE Emax E1/E MS	
SACE Emax E3/E MS	
SACE Emax E4/E MS	
SACE Emax E6/E MS	9 /47
Выкатные разъединители SACE Emax CS	9 /48
Заземляющие разъединители SACE Emax MTP	
Выкатные заземлители SACE Emax MT	.9 /50
Фиксированные части SACE Emax FP	9 /51
Комплекты преобразования для стационарных автоматических выключателей или	
фиксированных частей	9 /53
Дополнительные коды	9 /54
Аксессуары SACE Emax	9 /55
Микропроцессорные расцепители и модули номинального тока (отдельная поставка)	9 /61
Примеры составления заказа	9 /62
ABB SACE	9/1


Общие сведения


Аббревиатуры, использующиеся в описании выключателей.



PR122/P

PR123/P

F Стационарное исполнение

W Выкатное исполнение

MP Подвижная часть выкатного автоматического выключателя FP Фиксированная часть выкатного автоматического

выключателя

PR121/P Микропроцессорный расцепитель (с функциями LI, LSI, LSIG)

Микропроцессорный расцепитель (с функциями LI, LSI, LSIG,

Микропроцессорный расцепитель (с функциями LSI, LSIG)

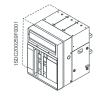
Функции:

- Защита от перегрузки с долговременной обратнозависимой задержкой срабатывания
- Защита от короткого замыкания с кратковременной обратнозависимой задержкой или независимой задержкой
- Защита от короткого замыкания с регулируемым порогом и мгновенным срабатыванием
- G Защита от замыкания на землю
- Rc Защита от тока утечки на землю
- Номинальный ток автоматического выключателя
- In Номинальный ток трансформаторов тока микропроцессорного расцепителя
- lcu Номинальная предельная отключающая способность

Icw Номинальный кратковременно допустимый сквозной ток

AC переменный ток DC постоянный ток

/MS Выключатель-разъединитель


Автоматический выключатель на напряжение до 1150 B /E /E MS Выключатель-разъединитель на напряжение до 1150 В АС и 1000 В DC

CS Выкатной разъединитель MTP Заземляющий разъединитель MT Выкатной заземлитель

ABB SACE 9/2

Автоматические выключатели SACE Emax

PR121/P

1SDA.....R1 4-полюсный 3-полюсный

PR122/P

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный 4-полюсный

E1B 08

Iu $(40 \, ^{\circ}C) = 800 \, A$ Icu (415 B) = 42 KA lcw (1 c) = 42 KA

Стационарное исполнение (F

=1	HR =горі	HR =горизонтальные выводы для подключения сзади								
7	LI	55600	55608	55603	55611					
	LSI	55601	55609	55604	55612	55606	55614			
	LSIG	55602	55610	55605	55613	55607	55615			
	LSIRc			58553	58555					

E1N 08

Iu $(40 \,^{\circ}\text{C}) = 800 \,\text{A}$

lcu (415B) = 50 KA

lcw(1c) = 50 KA

Стационарное исполнение (F

=\	HR =гори:	HR =горизонтальные выводы для подключения сзади									
-)	LI	55696	55704	55699	55707						
	LSI	55697	55705	55700	55708	55702	55710				
	LSIG	55698	55706	55701	55709	55703	55711				
	LSIRc			58577	58579						

E1B 10

Iu $(40 \, ^{\circ}\text{C}) = 1000 \, \text{A}$

Icu (415 B) = 42 KA

lcw (1 c) = 42 KA

Стационарное исполнение (F)

HR =ro	ризонтальные	выводы для под	цключения сзади	1			
LI	59169	59171	59181	59183			
LSI	59173	59175	59185	59187	59197	59199	
LSIG	59177	59179	59189	59191	59201	59203	
LSIRc			59193	59195			

E1N 10

Iu $(40 \,^{\circ}\text{C}) = 1000 \,\text{A}$

Icu (415B) = 50 KA

1cw (1 c) = 50 KA

Стационарное исполнение (F)

-۱	HR =гори	зонтальные вы	іводы для подклю	очения сзади			
,	LI	59213	59215	59225	59227		
	LSI	59217	59219	59229	59231	59241	59243
	LSIG	59221	59223	59233	59235	59245	59247
	LSIRc			59237	59239		

E1B 12

Iu $(40 \, ^{\circ}\text{C}) = 1250 \, \text{A}$

Icu (415B) = 42 KA Icw (1 c) = 42 KA

Стационарное исполнение (F)

HR =ro	HR =горизонтальные выводы для подключения сзади								
) <u> </u>	55632	55640	55635	55643					
LSI	55633	55641	55636	55644	55638	55646			
LSIG	55634	55642	55637	55645	55639	55647			
LSIRc			58561	58563					

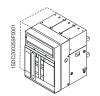
E1N 12

Iu $(40 \, ^{\circ}\text{C}) = 1250 \, \text{A}$

Icu (415B) = 50 KA

lcw (1 c) = 50 KA

Стационарное исполнение (F)


۱ HR	HR =горизонтальные выводы для подключения сзади								
) <u> </u>	55728	55736	55731	55739					
LSI	55729	55737	55732	55740	55734	55742			
LSI	55730	55738	55733	55741	55735	55743			
LSIF	Rc		58585	58587					

Фиксированная часть..... стр. 9/51 Выводы стр. 9/53 Дополнительные кодыстр. 9/54

ABB SACE 9/3

Автоматические выключатели SACE Emax

PR121/P

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный

4-полюсный

1SDA.....R1 4-полюсный 3-полюсный

E1B 16

Стационарное исполнение (F)

Iu $(40 \, ^{\circ}\text{C}) = 1600 \, \text{A}$ Icu (415 B) = 42 KA Icw (1 c) = 42 KA

HR =ro	ризонтальные	выводы для под	цключения сзади	1			
<i>)</i> []	55664	55672	55667	55675			
LSI	55665	55673	55668	55676	55670	55678	
LSIG	55666	55674	55669	55677	55671	55679	
LSIRc			58569	58571			

E1N 16

 $Iu (40 \,^{\circ}C) = 1600 \, A$ $Icu (415 \, B) = 50 \, KA$ $Icw (1 \, c) = 50 \, KA$

Стационарное исполнение (F

=\	HR =горизонтальные выводы для подключения сзади								
7	LI	55760	55768	55763	55771				
	LSI	55761	55769	55764	55772	55766	55774		
	LSIG	55762	55770	55765	55773	55767	55775		
	LSIRc			58593	58595				

PR121/P

PR122/P

PR123/P

1SDA.....R1 3-полюсный

1SDA.....R1 4-полюсный 3-полюсный

1SDA.....R1 3-полюсный 4-полюсный 1SDA.....R1 3-полюсный 4-полюсный

E1B 08

Выкатное исполнение (W) - MP

1U (4U C) = UUU A	$Iu (40 ^{\circ}C) = 800 A$	lcu (415 B) = 42 KA	lcw (1 s) = 42 KA
--------------------------	-----------------------------	---------------------	-------------------

MP = подвижная часть							
LI	55616	55624	55619	55627			
LSI	55617	55625	55620	55628	55622	55630	
LSIG	55618	55626	55621	55629	55623	55631	
LSIRc			58557	58559			

E1N 08

Выкатное исполнение (W) - MP

Iu (40 °C) = 800 A Icu (415 B) = 50 KA Icw (1 c) = 50 KA

МР = по	MP = подвижная часть							
LI	55712	55720	55715	55723				
LSI	55713	55721	55716	55724	55718	55726		
LSIG	55714	55722	55717	55725	55719	55727		
LSIRc			58581	58583				

E1B 10

Выкатное исполнение (W) - MP

$lu (40 \,^{\circ}C) = 1000 \,^{\circ}A$ $lcu (415 \,^{\circ}B) = 42 \,^{\circ}KA$ $lcw (1 \,^{\circ}C) = 42 \,^{\circ}KA$

МР = подвижная часть						
LI	59170	59172	59182	59184		
LSI	59174	59176	59186	59188	59198	59200
LSIG	59178	59180	59190	59192	59202	59204
LSIRc			59194	59196		

E1N 10

Выкатное исполнение (W) - MP

Iu (40 °C) = 1000 A Icu (415 B) = 50 KA Icw (1 c) = 50 KA

MP = n	одвижная час						
LI	59214	59216	59226	59228			
LSI	59218	59220	59230	59232	59242	59244	
LSIG	59222	59224	59234	59236	59246	59248	
LSIRc			59238	59240			

E1B 12

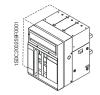
Выкатное исполнение (W) - MP

$lu (40 \, ^{\circ}C) = 1250 \, A$ $lcu (415 \, B) = 42 \, KA$ $lcw (1 \, c) = 42 \, KA$

МР = подвижная часть								
LI	55648	55656	55651	55659				
LSI	55649	55657	55652	55660	55654	55662		
LSIG	55650	55658	55653	55661	55655	55663		
LSIRc			58565	58567				

E1N 12

Выкатное исполнение (W) - MP


$Iu (40 \, ^{\circ}C) = 1250 \, A$ $Icu (415 \, B) = 50 \, KA$ $Icw (1 \, c) = 50 \, KA$

МР = подвижная часть								
LI	55744	55752	55747	55755				
LSI	55745	55753	55748	55756	55750	55758		
LSIG	55746	55754	55749	55757	55751	55759		
LSIRc			58589	58591				

Фиксированная часть..... стр. 9/51 Выводыстр. 9/53 Дополнительные кодыстр. 9/54

Автоматические выключатели SACE Emax

E1B 16

Выкатное исполнение (W) - MP

E1N 16

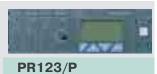
Выкатное исполнение (W) - MP

	FAVA	CFAVA
PR121/P	PR122/P	PR123/P
1SDAR1 3-полюсный 4-полюсный	1SDAR1 3-полюсный 4-полюсный	1SDAR1 3-полюсный 4-полюсный


Iu $(40 \,^{\circ}\text{C}) = 1600 \,\text{A}$ Icu $(415 \,\text{B}) = 42 \,\text{KA}$ Icw $(1 \,\text{c}) = 42 \,\text{KA}$

МР = подвижная часть								
LI	55680	55688	55683	55691				
LSI	55681	55689	55684	55692	55686	55694		
LSIG	55682	55690	55685	55693	55687	55695		
LSIRc			58573	58575				

$Iu (40 \, ^{\circ}C) = 1600 \, A$ $Icu (415 \, B) = 50 \, KA$ $Icw (1 \, c) = 50 \, KA$


МР = подвижная часть								
LI	55776	55784	55779	55787				
LSI	55777	55785	55780	55788	55782	55790		
LSIG	55778	55786	55781	55789	55783	55791		
LSIRc			58597	58599				

Фиксированная часть стр. 9/51 Выводыстр. 9/53 Дополнительные кодыстр. 9/54

PR121/P

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный 4-полюсный

E2S 08

Iu $(40 \,^{\circ}\text{C}) = 800 \,^{\circ}\text{A}$ Icu $(415 \,^{\circ}\text{B}) = 85 \,^{\circ}\text{KA}$ Icw $(1 \,^{\circ}\text{C}) = 65 \,^{\circ}\text{KA}$

Стационарное исполнение (F)

٥,	нк =гори	изонтальные вы	іводы для подкл	ючения сзади			
-)	LI	58282	58290	58285	58293		
	LSI	58283	58291	58286	58294	58288	58296
	LSIG	58284	58292	58287	58295	58289	58297
	LSIR			58657	58659		

E2N 10

 $lu (40 \, ^{\circ}C) = 1000 \, A$ $lcu (415 \, B) = 65 \, KA$ $lcw (1 \, c) = 55 \, KA$

Стационарное исполнение (F

F)	HR =горизонтальные выводы для подключения сзади								
	LI	59257	59259	59269	59271				
	LSI	59261	59263	59273	59275	59285	59287		
	LSIG	59265	59267	59277	59279	59289	59291		
	LSIR			59281	59283				

E2S 10

 $Iu (40 \, ^{\circ}C) = 1000 \, A$ $Icu (415 \, B) = 85 \, KA$ $Icw (1 \, c) = 65 \, KA$

Стационарное исполнение (F)

_{т)} HR =горизонтальные выводы для подключения сзади							
) LI	59301	59303	59313	59315			
LSI	59305	59307	59317	59319	59329	59331	
LSIG	59309	59311	59321	59323	59333	59335	
LSIRc			59325	59327			

E2N 12

Iu (40 °C) = 1250 A Icu (415 B) = 65 KA Icw (1 c) = 55 KA

Стационарное исполнение (F)

- ₁ HR =горизонтальные выводы для подключения сзади							
,	LI	55856	5586	55859	55867		
	LSI	55857	5586	55860	55868	55862	55870
	LSIG	55858	55866	55861	55869	55863	55871
	LSIR			58633	58635		

E2S 12

 $Iu (40 \, ^{\circ}C) = 1250 \, A$ $Icu (415 \, B) = 85 \, KA$ $Icw (1 \, c) = 65 \, KA$

Стационарное исполнение (F

-/ H	HR =горизонтальные выводы для подключения сзади								
, <u> </u>	I	55952	55960	55955	55963				
L	.SI	55953	55961	55956	55964	55958	55966		
L	SIG	55954	55962	55957	55965	55959	55967		
L	SIR			58665	58667				

E2L 12

 $lu (40 \, ^{\circ}C) = 1250 \, A$ $lcu (415 \, B) = 130 \, KA$ $lcw (1 \, c) = 10 \, KA$

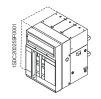
Стационарное исполнение (F

HR =ro	ризонтальны	е выводы для по	дключения сзад	ди			
<u> </u>	56048	5605	56051	56059			
LSI	56049	56057	56052	56060	56054	56062	
LSIG	56050	56058	56053	56061	56055	56063	
LSIR			58617	58619			

E2B 16

 $Iu (40 \,^{\circ}C) = 1600 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 42 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 42 \,^{\circ}KA$

Стационарное исполнение (F)


HR =горизонтальные выводы для подключения сзади								
LI	55792	55800	55795	55803				
LSI	55793	55801	55796	55804	55798	55806		
LSIG	55794	55802	55797	55805	55799	55807		
LSIR			58601	58603				

Фиксированная часть..... стр. 9/51 Выводы......стр. 9/53 Дополнительные коды.....стр. 9/54

ABB SACE 9/7

Автоматические выключатели SACE Emax

PR121/P

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный 4-полюсный

E2N 16

Стационарное исполнение (F)

Iu (40 °C) = **1600 A** lcu (415 B) = 65 KA lcw (1 c) = 55 KA

HR = горизонтальные выводы для подключения сзади								
LI	55888	55896	55891	55899				
LSI	55889	55897	55892	55900	55894	55902		
LSIG	55890	55898	55893	55901	55895	55903		
LSIR			58641	58643				

E2S 16

 $Iu (40 \, ^{\circ}C) = 1600 \, A$ $Icu (415 \, B) = 85 \, KA$ $Icw (1 \, c) = 65 \, KA$

Стационарное исполнение (F

=\	HR = горь	IR = горизонтальные выводы для подключения сзади								
)	LI	55984	55992	55987	55995					
	LSI	55985	55993	55988	55996	55990	55998			
	LSIG	55986	55994	55989	55997	55991	55999			
	LSIR			58673	58675					

E2L 16

 $Iu (40 \, ^{\circ}C) = 1600 \, A$ $Icu (415 \, B) = 130 \, KA$ $Icw (1 \, c) = 10 \, KA$

Стационарное исполнение (F)

\ HR = ro	R = горизонтальные выводы для подключения сзади							
LI	56080	56088	56083	56091				
LSI	56081	56089	56084	56092	56086	56094		
LSIG	56082	56090	56085	56093	56087	56095		
LSIRc			58625	58627				

E2B 20

 $Iu (40 \, ^{\circ}C) = 2000 \, A$ $Icu (415 \, B) = 42 \, KA$ $Icw (1 \, c) = 42 \, KA$

Стационарное исполнение (F)

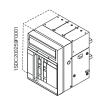
HK = ro	нн = горизонтальные выводы для подключения сзади						
LI	55824	55832	55827	55835			
LSI	55825	55833	55828	55836	55830	55838	
LSIG	55826	55834	55829	55837	55831	55839	
LSIRc			58609	58611			

E2N 20

 $Iu (40 ^{\circ}C) = 2000 A$ Icu (415 B) = 65 KA Icw (1 c) = 55 KA

Стационарное исполнение (F)

\ _ нк = горизонтальные выводы для подключения сзади							
, <u> </u>	55920	55928	55923	55931			
LSI	55921	55929	55924	55932	55926	55934	
LSIG	55922	55930	55925	55933	55927	55935	
LSIRc			58649	58651			


E2S 20

 $lu (40 \, ^{\circ}C) = 2000 \, A$ $lcu (415 \, B) = 85 \, KA$ $lcw (1 \, c) = 65 \, KA$

Стационарное исполнение (F)

, HR = горизонтальные выводы для подключения сзади							
) [[56016	56024	56019	56027			
LSI	56017	56025	56020	56028	56022	56030	
LSIG	56018	56026	56021	56029	56023	56031	
LSIRc			58681	58683			

Выводы стр. 9/53

4-полюсный

PR121/P

PR122/P

PR123/P

1SDA.....R1 3-полюсный **1SDA.....R1** 3-полюсный 4-полюсный 1SDA.....R1 3-полюсный 4-полюсный

E2S 08

Выкатное исполнение (W) - MP

$lu (40 ^{\circ}C) = 800 A$	Icu (415B) = 85 KA	1cw (1 c) = 65 KA
-----------------------------	------------------------------	-------------------

MP = n	одвижная час	ТЬ					
LI	58298	58306	58301	58309			
LSI	58299	58307	58302	58310	58304	58312	
LSIG	58300	58308	58303	58311	58305	58313	
LSIRc			58661	58663			

E2N 10

Выкатное исполнение (W) - MP

lu (40 °C) = 1000 A	lcu (415B) = 65 KA	lcw (1 c) = 55 KA
10 (40 C) = 1000 A	100 (4 13 B) = 00 KA	

МР = по	одвижная час	гь					
LI	59258	59260	59270	59272			
LSI	59262	59264	59274	59276	59286	59288	
LSIG	59266	59268	59278	59280	59290	59292	
LSIRc			59282	59284			

E2S 10

Выкатное исполнение (W) - MP

$lu (40 ^{\circ}C) = 1000 A$	Icu (415B) = 85 KA	lcw(1c) = 65 KA
IU (40 C) - IUUU A	10u (413 b) - 03 kA	10W (10) - 00 K/

МР = по	одвижная част	ГЬ				
LI	59302	59304	59314	59316		
LSI	59306	59308	59318	59320	59330	59332
LSIG	59310	59312	59322	59324	59334	59336
I SIDo			50226	50228		

E2N 12

Выкатное исполнение (W) - MP

lu (40 °C)	= 1250 A	lcu (415B) = 65 KA	1cw (1 c) = 55 KA
14 (40 0)		100 (+10 D) OO 10 1	1011 (10) 00 101

МР = по	одвижная час	гь				
LI	55872	55880	55875	55883		
LSI	55873	55881	55876	55884	55878	55886
LSIG	55874	55882	55877	55885	55879	55887
LSIRc			58637	58639		

E2S 12

Выкатное исполнение (W) - MP

$Iu (40 \,^{\circ}C) = 1250 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 85 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 65 \,^{\circ}KA$

MP = π	одвижная час	ТЬ					
LI	55968	55976	55971	55979			
LSI	55969	55977	55972	55980	55974	55982	
LSIG	55970	55978	55973	55981	55975	55983	
LSIRc			58669	58671			

E2L 12

Выкатное исполнение (W) - MP

$Iu (40 \,^{\circ}C) = 1250 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 130 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 10 \,^{\circ}KA$

МР = п	одвижная част	ГЬ					
LI	56064	56072	56067	56075			
LSI	56065	56073	56068	56076	56070	56078	
LSIG	56066	56074	56069	56077	56071	56079	
LSIRc			58621	58623			

E2B 16

Выкатное исполнение (W) - MP

Iu (40 °C) = 1600 A Icu (415 B) = 42 KA Icw (1 c) = 42 KA

МР = по	одвижная част	ГЬ				
LI	55808	55816	55811	55819		
LSI	55809	55817	55812	55820	55814	55822
LSIG	55810	55818	55813	55821	55815	55823
LSIRc			58605	58607		

ABB SACE 9/9

Автоматические выключатели SACE Emax

PR121/P

PR122/P

PR123/P

1SDA.....R1 3-полюсный 1SDA.....R1

3-полюсный 4-полюсный

1SDA.....R1 3-полюсный

4-полюсный

E2N 16

Выкатное исполнение (W) - MP

10 (40 C) - 1000 A 100 (413B) - 00 KA 10W (10) - 00 I	u (40 °C) = 1600 A	Icu (415B) = 65 KA	1cw (1 c) = 55 KA
---	---------------------------	---------------------------	-------------------

4-полюсный

МР = подвижная часть								
LI	55904	55912	55907	55915				
LSI	55905	55913	55908	5591	55910	55918		
LSIG	55906	55914	55909	55917	55911	55919		
LSIR			58645	58647				

E2S 16

Выкатное исполнение (W) - MP

Iu (40 °C) = 1600 AIcu (415B) = 85 KA1cw (1 c) = 65 KA

МР = по	движная час	ть					
LI	56000	56008	56003	56011			
LSI	56001	56009	56004	56012	56006	56014	
LSIG	56002	56010	56005	56013	56007	56015	
LSIRc			58677	58679			

E2L 16

Выкатное исполнение (W) - MP

Iu $(40 \, ^{\circ}\text{C}) = 1600 \, \text{A}$ Icu (415B) = 130 KAIcw (1 c) = 10 KA

MP = π	одвижная час	ТЬ					
LI	56096	56104	56099	56107			
LSI	56097	56105	56100	56108	56102	56110	
LSIG	56098	56106	56101	56109	56103	56111	
LSIRc			58629	58631			

E2B 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 AIcu (415B) = 42 KAIcw (1 c) = 42 KA

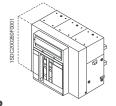
МР = по	одвижная час	ть					
LI	55840	55848	55843	55851			
LSI	55841	55849	55844	55852	55846	55854	
LSIG	55842	55850	55845	55853	55847	55855	
LSIRc			58613	58615			

E2N 20

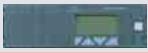
Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 A Icu (415B) = 65 KAlcw (1 c) = 55 KA

МР = под	цвижная час	СТЬ					
LI	55936	55944	55939	55947			
LSI	55937	55945	55940	55948	55942	55950	
LSIG	55938	55946	55941	55949	55943	55951	
LSIRc			58653	58655			


E2S 20

Выкатное исполнение (W) - MP


Iu (40 °C) = 2000 A lcw (1 c) = 65 KAIcu (415B) = 85 KA

МР = по	одвижная час	іжная часть					
LI	56032	56040	56035	56043			
LSI	56033	56041	56036	56044	56038	56046	
LSIG	56034	56042	56037	56045	56039	56047	
LSIRc			58685	58687			

Фиксированная часть стр. 9/51

PR121/P

1SDA.....R1 3-полюсный 4-полюсный 1SDA.....R1 3-полюсный 4-полюсный

PR122/P

1SDA.....R1 3-полюсный 4-полюсный

E3H 08

 $lu (40 \, ^{\circ}C) = 800 \, A$ $lcu (415 \, B) = 100 \, KA$ $lcw (1 \, c) = 75 \, KA$

Стационарное исполнение (F)

٠,	HR = гори	130нтальные вы	воды для подклю	чения сзади			
)	LI	56336	56344	56339	56347		
	LSI	56337	56345	56340	56348	56342	56350
	LSIG	56338	56346	56341	56349	56343	56351
	LSIRc			58689	58691		

E3V 08

Iu (40 °C) = 800 A Icu (415 B) = 130 KA Icw (1 c) = 85 KA

Стационарное исполнение (F)

=\	HR = ropi	130нтальные вы	воды для подклю	чения сзади			
-)	LI	56528	56536	56531	56539		
	LSI	56529	56537	56532	56540	56534	56542
	LSIG	56530	56538	56533	56541	56535	56543
	LSIRc			58809	58811		

E3S 10

 $lu (40 \, ^{\circ}C) = 1000 \, A$ $lcu (415 \, B) = 75 \, KA$ $lcw (1 \, c) = 75 \, KA$

Стационарное исполнение (F)

٠,	HR = гори	зонтальные вы	воды для подклю	чения сзади			
)	LI	59285	59387	59397	59399		
	LSI	59389	59391	59401	59403	59413	59415
	LSIG	59393	59395	59405	59407	59417	59419
	LSIRc			59409	59411		

E3H 10

 $Iu (40 \,^{\circ}C) = 1000 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 100 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 75 \,^{\circ}KA$

Стационарное исполнение (F)

٠,	HR = гори	зонтальные выв	оды для подключ	нения сзади			
)	LI	59345	59347	59357	59359		
	LSI	59349	59351	59361	59363	59373	59375
	LSIG	59353	59355	59365	59367	59377	59379
	LSIRc			59369	59371		

E3S 12

 $lu (40 \, ^{\circ}C) = 1250 \, A$ $lcu (415 \, B) = 75 \, KA$ $lcw (1 \, c) = 75 \, KA$

Стационарное исполнение (F)

=۱	HR = ropi	изонтальные вы	воды для подклю	чения сзади			
,	LI	56176	56184	56179	56187		
	LSI	56177	56185	56180	56188	56182	56190
	LSIG	56178	56186	56181	56189	56183	56191
	LSIRc			58769	58771		

E3H 12

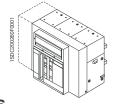
 $Iu (40 \, ^{\circ}C) = 1250 \, A$ $Icu (415 \, B) = 100 \, KA$ $Icw (1 \, c) = 75 \, KA$

Стационарное исполнение (F

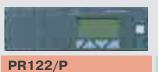
, HR = го	ризонтальные	е выводы для под	ключения сзади			
) [[56368	56376	56371	56379		
LSI	56369	56377	56372	56380	56374	56382
LSIG	56370	56378	56373	56381	56375	56383
LSIRc			58697	58699		

E3V 12

 $Iu (40 \,^{\circ}C) = 1250 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 130 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 85 \,^{\circ}KA$


Стационарное исполнение (F)

, HR = го	HR = горизонтальные выводы для подключения сзади								
) [[56560	56568	56563	56571					
LSI	56561	56569	56564	56572	56566	56574			
LSIG	56562	56570	56565	56573	56567	56575			
LSIRc			58817	58819					


ABB SACE 9/11

Автоматические выключатели SACE Emax

PR121/P

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1

56214

56215

E3S 16

56212

56213

58777

3-полюсный 4-полюсный

56222

56223

Iu $(40 \, ^{\circ}C) = 1600 \, A$

56208

56209

56210

LI

LSI

LSIG

LSIRc

Icu (415 B) = 75 KA

lcw (1 c) = 75 KA

56219

56220

56221

58779

56411

 $Iu (40 ^{\circ}C) = 1600 A$

Icu (415B) = 100 KA

1cw (1 c) = 75 KA

Стационарное исполнение (F

Стационарное исполнение (F)

=/	-	пп – горизонтальные выводы для подключения сзади							
,	LI	56400	56408	56403					
	LSI	56401	56409	56404					

HR = горизонтальные выводы для подключения сзади

56216

56217

56218

56412 56406 56414 LSIG 56402 56410 56405 56413 56407 56415 58707 LSIR 58705

E3V 16

E3H 16

Iu $(40 \, ^{\circ}\text{C}) = 1600 \, \text{A}$

Icu (415 B) = 130 KA

Icw (1 c) = 85 KA

Стационарное исполнение (F)

۲.	нн = горизонтальные выводы для подключения сзади							
'	LI	56592	56600	56595	56603			
	LSI	56593	56601	56596	56604	56598	56606	
	LSIG	56594	56602	56597	56605	56599	56607	
	LSIRc			58825	58827			

E3S 20

Iu $(40 \, ^{\circ}\text{C}) = 2000 \, \text{A}$

Icu (415 B) = 75 KA

Icw (1 c) = 75 KA

Стационарное исполнение (F)

, HR = горизонтальные выводы для подключения сзади							
, <u>li</u>	56240	56248	56243	56251			
LSI	56241	56249	56244	56252	56246	56254	
LSIG	56242	56250	56245	56253	56247	56255	
LSIRc			58785	58787			

E3H 20

Iu $(40 \, ^{\circ}C) = 2000 \, A$

Icu (415 B) = 100 KA

1cw (1 c) = 75 KA

Стационарное исполнение (F)

、HR = горизонтальные выводы для подключения сзади							
, <u> </u>	56432	56440	56435	56443			
LSI	56433	56441	56436	56444	56438	56446	
LSIG	56434	56442	56437	56445	56439	56447	
LSIRc			58713	58715			

E3V 20

Iu $(40 \, ^{\circ}C) = 2000 \, A$

Icu (415B) = 130 KA

1cw (1 c) = 85 KA

Стационарное исполнение (F

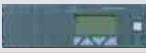
=\ HR = i	, HR = горизонтальные выводы для подключения сзади								
, <u> </u>	56624	56632	56627	56635					
LSI	56625	56633	56628	56636	56630	56638			
LSIG	56626	56634	56629	56637	56631	56639			
LSIRc			58833	58835					

E3L 20

Iu (40 °C) = 2000 A

Icu (415 B) = 130 KA

lcw (1 c) = 15 KA


Стационарное исполнение (F

= \	HR = горизонтальные выводы для подключения сзади								
''	LI	56720	56728	56723	56731				
	LSI	56721	56729	56724	56732	56726	56734		
	LSIG	56722	56730	56725	56733	56727	56735		
	LSIRc		58737	58739					

Выводы стр. 9/53

PR121/P

1SDA.....R1 3-полюсный 4-полюсный 1SDA.....R1 3-полюсный 4-полюсный

PR122/P

1SDA.....R1 3-полюсный 4-полюсный

E3N 25

 $Iu (40 \,^{\circ}C) = 2500 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 65 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 65 \,^{\circ}KA$

Стационарное исполнение (F)

=\	HR = rop	HR = горизонтальные выводы для подключения сзади								
-)	LI	56112	56120	56115	56123					
	LSI	56113	56121	56116	56124	56118	56126			
	LSIG	56114	56122	56117	56125	56119	56127			
	LSIRc			58753	58755					

E3S 25

 $lu (40 \, ^{\circ}C) = 2500 \, A$ $lcu (415 \, B) = 75 \, KA$ $lcw (1 \, c) = 75 \, KA$

Стационарное исполнение (F)

=۱	HR = rop	HR = горизонтальные выводы для подключения сзади								
,	, <u> </u>	56272	56280	56275	56283					
	LSI	56273	56281	56276	56284	56278	56286			
	LSIG	56274	56282	56277	56285	56279	56287			
	LSIRc			58793	58795					

E3H 25

 $Iu (40 \,^{\circ}C) = 2500 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 100 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 75 \,^{\circ}KA$

Стационарное исполнение (F)

٠,	HR = горі	IR = горизонтальные выводы для подключения сзади								
,	LI	56464	56472	56467	56475					
	LSI	56465	56473	56468	56476	56470	56478			
	LSIG	56466	56474	56469	56477	56471	56479			
	LSIRc			58721	58723					

E3V 25

 $lu (40 \, ^{\circ}C) = 2500 \, A$ $lcu (415 \, B) = 130 \, KA$ $lcw (1 \, c) = 85 \, KA$

Стационарное исполнение (F)

\ HR = го	ризонтальнь	е выводы для по	одключения сза	ди			
) <u>LI</u>	56656	56664	56659	56667			
LSI	56657	56665	56660	56668	56662	56670	
LSIG	56658	56666	56661	56669	56663	56671	
LSIRc			58841	58843			

E3L 25

 $Iu (40 \, ^{\circ}C) = 2500 \, A$ $Icu (415 \, B) = 130 \, KA$ $Icw (1 \, c) = 15 \, KA$

Стационарное исполнение (F)

=\	HR = rop	HR = горизонтальные выводы для подключения сзади								
,	LI	56752	56760	56755	56763					
	LSI	56753	56761	56756	56764	56758	56766			
	LSIG	56754	56762	56757	56765	56759	56767			
	LSIRc			58745	58747					

E3N 32

Iu (40 °C) = 3200 A Icu (415 B) = 65 KA Icw (1 c) = 65 KA

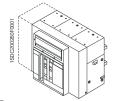
Стационарное исполнение (F

HR = горизонтальные выводы для подключения сзади									
) <u>Li</u>	56144	56152	56147	56155					
LSI	56145	56153	56148	56156	56150	56158			
LSIG	56146	56154	56149	56157	56151	56159			
LSIRc			58761	58763					

E3S 32

 $Iu (40 \, ^{\circ}C) = 3200 \, A$ $Icu (415 \, B) = 75 \, KA$ $Icw (1 \, c) = 75 \, KA$

Стационарное исполнение (F


- HR = горизонтальные выводы для подключения сзади										
/ _{LI}	56304	56312	56307	56315						
LSI	56305	56313	56308	56316	56310	56318				
LSIG	56306	56314	56309	56317	56311	56319				
LSIRc			58801	58803						

Фиксированная часть стр. 9/51 Выводы стр. 9/53 Дополнительные коды стр. 9/54

ABB SACE 9/13

Автоматические выключатели SACE Emax

PR121/P

1SDA.....R1 3-полюсный 4-полюсный

1SDA.....R1 3-полюсный 4-полюсный

PR123/P

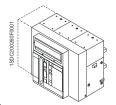
1SDA.....R1 3-полюсный 4-полюсный

E3H 32

Стационарное исполнение (F)

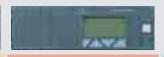
 $lu (40 \, ^{\circ}C) = 3200 \, A$ $lcu (415 \, B) = 100 \, kA$ $lcw (1 \, c) = 75 \, kA$

N HR = горизонтальные выводы для подключения сзади									
, <u>li</u>	56496	56504	56499	56507					
LSI	56497	56505	56500	56508	56502	56510			
LSIG	56498	56506	56501	56509	56503	56511			
LSIRc			58729	58731					


E3V 32

Стационарное исполнение (F)

 $Iu (40 \,^{\circ}C) = 3200 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 130 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 85 \,^{\circ}KA$


۲.	HR = rop	HR = горизонтальные выводы для подключения сзади								
,	LI	56688	56696	56691	56699					
	LSI	56689	56697	56692	56700	56694	56702			
	LSIG	56690	56698	56693	56701	56695	56703			
	LSIRc			58849	58851					

- 1 6 E

4-полюсный

PR121/P

PR122/P

PR123/P

1SDA.....R1 3-полюсный 1SDA.....R1 3-полюсный 1SDA.....R1 4-полюсный 3-полюсный

1SDA.....R1 3-полюсный 4-полюсный

E3H 08

Выкатное исполнение (W) - MP

$lu (40 ^{\circ}C) = 800 A$ $lcu (415 B) = 100 KA$ $lcw (1 c) =$:u (4		Icu (415 B) = 100 KA	w (1 e	c) =	15	KА
---	-------	--	-----------------------------	--------	------	----	----

МР = подвижная часть								
LI	56352	56360	56355	56363				
LSI	56353	56361	56356	56364	56358	56366		
LSIG	56354	56362	56357	56365	56359	56367		
LSIRc			58693	58695				

E3V 08

Выкатное исполнение (W) - MP

lu (40 °C) = 800 A	Icu (415 B) = 130 KA	$low (1.c) = 85 \text{ K} \Delta$
10 140 C1 - 000 A	100 (413 B) - 130 KA	

МР = подвижная часть								
LI	56544	56552	56547	56555				
LSI	56545	56553	56548	56556	56550	56558		
LSIG	56546	56554	56549	56557	56551	56559		
LSIRc			58813	58815				

E3S 10

Выкатное исполнение (W) - MP

Iu (40 °C) = 1000 A Icu (415 B) = 75 KA Icw (1 c) = 75 KA

MP = no	MP = подвижная часть								
LI	59386	59388	59398	59400					
LSI	59390	59392	59402	59404	59414	59416			
LSIG	59394	59396	59406	59408	59418	59420			
I SIDo			50/10	50/12					

E3H 10

Выкатное исполнение (W) - MP

III (40 °C) = 1000 A	Icu (415 B) = 100 κΔ	low (1 a) = 75 κΔ

MP = no	MP = подвижная часть								
LI	59346	59348	59358	59360					
LSI	59350	59352	59362	59364	59374	59376			
LSIG	59354	59356	59366	59368	59378	59380			
LSIRc			59370	59372					

E3S 12

Выкатное исполнение (W) - MP

Iu (40 °C) = 1250 A Icu (415 B) = 75 KA Icw (1 c) = 75 KA

MP = no	MP = подвижная часть									
LI	56192	56200	56195	56203						
LSI	56193	56201	56196	56204	56198	56206				
LSIG	56194	56202	56197	56205	56199	56207				
LSIRc			58773	58775						

E3H 12

Выкатное исполнение (W) - MP

Iu (40 °C) = 1250 A Icu (415 B) = 100 KA Icw (1 c) = 75 KA

MP = no	одвижная част	ГЬ					
LI	56384	56392	56387	56395			
LSI	56385	56393	56388	56396	56390	56398	
LSIG	56386	56394	56389	56397	56391	56399	
LSIRc			58701	58703			

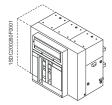
E3V 12

Выкатное исполнение (W) - MP

$Iu (40 \, ^{\circ}C) = 1250 \, A$ $Icu (415 \, B) = 130 \, KA$ $Icw (1 \, c) = 85 \, KA$

MP = по	движная част	ъ				
LI	56576	56584	56579	56587		
LSI	56577	56585	56580	56588	56582	56590
LSIG	56578	56586	56581	56589	56583	56591
LSIRc			58821	58823		

Фиксированная часть стр. 9/51 Выводы стр. 9/53 Дополнительные коды стр. 9/53
--


ABB SACE 9/15

1SDA.....R1

3-полюсный

Автоматические выключатели SACE Emax

PR121/P

PR122/P

1SDA.....R1 3-полюсный 4-полюсный

PR123/P

1SDA.....R1 3-полюсный 4-полюсный

E3S 16

Выкатное исполнение (W) - MP

Iu (40 °C) = 1600 A	Icu (415 B) = 75 KA	lcw (1 c) = 75 KA
----------------------------	----------------------------	--------------------------

4-полюсный

MP = no	одвижная част	гь				
LI	56224	56232	56227	56235		
LSI	56225	56233	56228	56236	56230	56238
LSIG	56226	56234	56229	56237	56231	56239
LSIRc			58781	58783		

E3H 16

Выкатное исполнение (W) - MP

III (40 °C) = 1600 A	Icu (415 B) = 100 KA	lcw (1 c) = 75 KA

MP = no	движная част	гь					
LI	56416	56424	56419	56427			
LSI	56417	56425	56420	56428	56422	56430	
LSIG	56418	56426	56421	56429	56423	56431	
LSIR			58709	58711			

E3V 16

Выкатное исполнение (W) - MP

$Iu (40 \, ^{\circ}C) = 1600 \, A \, Icu (415 \, B) = 130 \, KA$ lcw (1 c) = 85 KA

MP = no	одвижная час	ТЬ					
LI	56608	56616	56611	56619			
LSI	56609	56617	56612	56620	56614	56622	
LSIG	56610	56618	56613	56621	56615	56623	
LSIRc			58829	58831			

E3S 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 A Icu (415 B) = 75 KAIcw (1 c) = 75 KA

MP = no	одвижная час	ТЬ					
LI	56256	56264	56259	56267			
LSI	56257	56265	56260	56268	56262	56270	
LSIG	56258	56266	56261	56269	56263	56271	
LSIRc			58789	58791			

E3H 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 AIcu (415 B) = 100 KAlcw (1 c) = 75 KA

MP = no	одвижная част	ГЬ					
LI	56448	56456	56451	56459			
LSI	56449	56457	56452	56460	56454	56462	
LSIG	56450	56458	56453	56461	56455	56463	
LSIRc			58717	58719			

E3V 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 A Icu (415 B) = **130 KA** lcw (1 c) = 85 KA

МР = п	одвижная час	ть					
LI	56640	56648	56643	56651			
LSI	56641	56649	56644	56652	56646	56654	
LSIG	56642	56650	56645	56653	56647	56655	
LSIRc			58837	58839			

E3L 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 AIcu (415 B) = 130 KA lcw (1 c) = 15 KA

LSI 56736 56744 56739 LSI 56737 56745 56740	56747 56748	50740	
LSI 56737 56745 56740	567/18	FC740	
	307-0	56742	56750
LSIG 56738 56746 56741	56749	56743	56751
LSIRc 58741	58743		

9/16 ABB SACE

4-полюсный

PR121/P

PR122/P

PR123/P

1SDA.....R1 3-полюсный 1SDA.....R1 3-полюсный 4-полюсный 1SDA.....R1 3-полюсный 4-полюсный

E3N 25

Выкатное исполнение (W) - MP

Iu (40 °C) = 2500 A Icu (4	415B) = 65 KA lc\	w(1c) = 65 KA
----------------------------	--------------------------	----------------

MP = подвижная часть						
LI	56128	56136	56131	56139		
LSI	56129	56137	56132	56140	56134	56142
LSIG	56130	56138	56133	56141	56135	56143
LSIRc			58757	58759		

E3S 25

Выкатное исполнение (W) - MP

Iu (40 °C) = $2500 A$	lcu (415B) = 75 KA	lcw (1 c) = 75 KA
-----------------------	---------------------------	-------------------

МР = подвижная часть							
LI	56288	56296	56291	56299			
LSI	56289	56297	56292	56300	56294	56302	
LSIG	56290	56298	56293	56301	56295	56303	
LSIRc				58797	58799		

E3H 25

Выкатное исполнение (W) - MP

Iu (40 °C) = 2500 A Icu (415 B) = 100 KA Icw (1 c) = 75 KA

МР = подвижная часть						
LI	56480	56488	56483	56491		
LSI	56481	56489	56484	56492	56486	56494
LSIG	56482	56490	56485	56493	56487	56495
I SIDo			59725	59727		

E3V 25

Выкатное исполнение (W) - MP

10 (40 C) - 2000 A 100 (410B) - 100 KA 10W (10) - 00	Iu (40 °C) = 250	A Icu (415	5в) =130 к /	lcw (1 c	:) =85 K	Ά
--	------------------	------------	---------------------	----------	----------	---

MP = n	MP = подвижная часть						
LI	56672	56680	56675	56683			
LSI	56673	56681	56676	56684	56678	56686	
LSIG	56674	56682	56677	56685	56679	56687	
LSIRc			58845	58847			

E3L 25

Выкатное исполнение (W) - MP

$Iu (40 \,^{\circ}C) = 2500 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 130 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 15 \,^{\circ}KA$

МР = п	MP = подвижная часть						
LI	56768	56776	56771	56779			
LSI	56769	56777	56772	56780	56774	56782	
LSIG	56770	56778	56773	56781	56775	56783	
LSIRc			58749	58751			

E3N 32

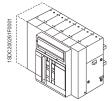
Выкатное исполнение (W) - MP

Iu (40 °C) = 3200 A Icu (415 B) = 65 KA Icw (1 c) = 65 KA

MP = подвижная часть							
LI	56160	56168	56163	56171			
LSI	56161	56169	56164	56172	56166	56174	
LSIG	56162	56170	56165	56173	56167	56175	
LSIRc			58765	58767			

E3S 32

Выкатное исполнение (W) - MP


Iu $(40 \,^{\circ}\text{C}) = 3200 \,\text{A}$ Icu $(415 \,\text{B}) = 75 \,\text{KA}$ Icw $(1 \,\text{c}) = 75 \,\text{KA}$

МР = подвижная часть						
LI	56320	56328	56323	56331		
LSI	56321	56329	56324	56332	56326	56334
LSIG	56322	56330	56325	56333	56327	56335
LSIRc			58805	58807		

Фиксированная часть стр. 9/51 Выводы стр. 9/53 Дополнительные коды стр. 9/54

Автоматические выключатели SACE Emax

E3H 32

Выкатное исполнение (W) - MP

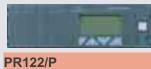
E3V 32

Выкатное исполнение (W) - MP

	FAVA	•	YAYA
PR121/P	PR122/P	PR123/P	
1SDAR1 3-полюсный 4-полюсный	1SDAR1 3-полюсный 4-полюсны	1SDAR1 ій 3-полюсный	4-полюсный

Iu (40 °C) = 3200 A Icu (415 B) = 100 KA Icw (1 c) = 75 KA

МР = подвижная часть							
LI	56512	56520	56515	56523			
LSI	56513	56521	56516	56524	56518	56526	
LSIG	56514	56522	56517	56525	56519	56527	
LSIRc			58733	58735			


lu (40 °C) = 3200 A	lcu (415 B) = 130 KA	Icw (1c) =	85 кА
----------------------------	-----------------------------	------------	-------

MP = подвижная часть							
LI	56704	56712	56707	56715			
LSI	56705	56713	56708	56716	56710	56718	
LSIG	56706	56714	56709	56717	56711	56719	
LSIRc			58853	58855			

Фиксированная часть стр. 9/51 Выводы стр. 9/53 Дополнительные коды стр. 9/54

PR121/P

1SDA.....R1 3-полюсный 4-полюсный 1SDA.....R1 3-полюсный 4-полюсный 1SDA.....R1 3-полюсный 4-полюсный

E4H 32

Iu (40 °C) = **3200 A**

Icu (415 B) = 100 KA

Icw (1 c) = 100 KA

Стационарное исполнение (F)

٠.	HR =горі	изонтальны	е выводы для под	ключения сзади	ı			
,	LI	56816	56824	56819	56827			
	LSI	56817	56825	56820	56828	56822	56830	
	LSIG	56818	56826	56821	56829	56823	56831	

E4V 32

Iu (40 °C) = **3200 A**

Icu (415B) = 150 KA

Icw (1 c) = 100 KA

Стационарное исполнение (F)

, HR =	HR =горизонтальные выводы для подключения сзади								
) _[]	56880	56888	56883	56891					
LSI	56881	56889	56884	56892	56886	56894			
LSIG	56882	56890	56885	56893	56887	56895			

E4S 40

Iu (40 °C) = **4000 A**

Icu (415B) = 75 KA

1cw (1 c) = 75 KA

Стационарное исполнение (F)

HR =го	HR =горизонтальные выводы для подключения сзади							
LI	56784	56792	56787	56795				
LSI	56785	56793	56788	56796	56790	56798		
LSIG	56786	56794	56789	56797	56791	56799		

E4H 40

Iu (40 °C) = 4000 A

lcu (415 B) = 100 KA

lcw (1 c) = 100 KA

Стационарное исполнение (F)

١.	HR =гори	зонтальные выв	воды для подклю	чения сзади			
,	LI	56848	56856	56851	56859		
	LSI	56849	56857	56852	56860	56854	56862
	LSIG	56850	56858	56853	56861	56855	56863

E4V 40

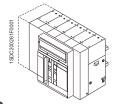
Iu (40 °C) = 4000 A

Icu (415 B) = 150 KA

lcw (1 c) = 100 KA

Стационарное исполнение (F

<u>ا</u> ۱=	нк =гори:	зонтальные выв	оды для подклю	чения сзади			
٦, <u>۱</u>	LI	56912	56920	56915	56923		
Ī	LSI	56913	56921	56916	56924	56918	56926
Ī	LSIG	56914	56922	56917	56925	56919	56927


Фиксированная часть..... стр. 9/51 Выводыстр. 9/53 Дополнительные кодыстр. 9/54

1SDA.....R1

3-полюсный

Автоматические выключатели SACE Emax

E4H 32

Выкатное исполнение (W) - MP

4-полюсный

PR122/P

PR123/P

1SDA.....R1 3-полюсный

4-полюсный

4-полюсный

lu (40 °C) = 3200 A	Icu (415 B) = 100 KA	lcw (1 c) = 100 KA
----------------------------	-----------------------------	--------------------

МР = подвижная часть							
LI	56832	56840	56835	56843			
LSI	56833	56841	56836	56844	56838	56846	
LSIG	56834	56842	56837	56845	56839	56847	

1SDA.....R1

3-полюсный

E4V 32

Выкатное исполнение (W) - MP

lu (40 °C) = 3200 A	lcu (415 B) = 150 KA	Icw (1 c) = 100 KA
14 (15 5)	104 (1102)	1011 (1.0)

MP = no	MP = подвижная часть						
LI	56896	56904	56899	56907			
LSI	56897	56905	56900	56908	56902	56910	
LSIG	56898	56906	56901	56909	56903	56911	

E4S 40

Выкатное исполнение (W) - MP

lu (40 °C) = 4000 A	Icu (415 B) = 75 KA	lcw (1 c) = 75 KA
14 (70 0) - 7000 / 1		

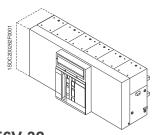
МР = подвижная часть									
LI	56800	56808	56803	56811					
LSI	56801	56809	56804	56812	56806	56814			
LSIG	56802	56810	56805	56813	56807	56815			

E4H 40

Выкатное исполнение (W) - MP

Iu (40 °C) = 4000 AIcu (415 B) = 100 KA lcw (1 c) = 100 KA

MP = подвижная часть								
LI	56864	56872	56867	56875				
LSI	56865	56873	56868	56876	56870	56878		
LSIG	56866	56874	56869	56877	56871	56879		


E4V 40

Выкатное исполнение (W) - MP

Iu (40 °C) = 4000 AIcu (415 B) = **150** KA lcw (1 c) = 100 KA

MP = n	МР = подвижная часть									
LI	56928	56936	56931	56939						
LSI	56929	56937	56932	56940	56934	56942				
LSIG	56930	56938	56933	56941	56935	56943				

Фиксированная часть стр. 9/51

E6V 32 Стационарное

исполнение (F)

1SDA.....R1 3-полюсный 4-полюсный

PR121/P

FAVA

1SDA.....R1 3-полюсный 4-полюсный PR123/P

1SDA.....R1

4-полюсный

3-полюсный

$lu~(40~^{\circ}C) = 3200~A~~lcu~(415~B) = 150~KA~~lcw~(1~c) = 100~KA$

HR = горизонтальные выводы для подключения сзади								
LI	57040	57048	57043	57051				
LSI	57041	57049	57044	57052	57046	57054		
LSIG	57042	57050	57045	57053	57047	57055		

PR122/P

E6H 40

Стационарное исполнение (F)

II. (40°C) = 4000 A	Icu (415 B) = 100 KA	Icw (1 c) = 100 KA
lu (40 °C) = 4000 A	Icu (415 B) = I UU KA	Icw(1c) = IUUKA

HR = горизонтальные выводы для подключения сзади								
LI	56944	56952	56947	56955				
LSI	56945	56953	56948	56956	56950	56958		
LSIG	56946	56954	56949	56957	56951	56959		

E6V 40

Стационарное исполнение (F)

Iu (40 °C) = 4000 A Icu (415 B) = 150 KA Icw (1 c) = 100 KA

HR = горизонтальные выводы для подключения сзади									
LI	57072	57080	57075	57083					
LSI	57073	57081	57076	57084	57078	57086			
LSIG	57074	57082	57077	57085	57079	57087			

E6H 50

Стационарное исполнение (F)

$Iu (40 \,^{\circ}C) = 5000 \, A$ $Icu (415 \, B) = 100 \, KA$ $Icw (1 \, c) = 100 \, KA$

HR = горизонтальные выводы для подключения сзади								
LI	56976	56984	56979	56987				
LSI	56977	56985	56980	56988	56982	56990		
LSIG	56978	56986	56981	56989	56983	56991		

E6V 50

Стационарное исполнение (F)

$Iu (40 \,^{\circ}C) = 5000 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 150 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 100 \,^{\circ}KA$

HR = ro	HR = горизонтальные выводы для подключения сзади								
LI	57104	57112	57107	57115					
LSI	57105	57113	57108	57116	57110	57118			
LSIG	57106	57114	57109	57117	57111	57119			

E6H 63

Стационарное исполнение (F)

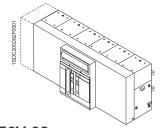
$Iu (40 \,^{\circ}C) = 6300 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 100 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 100 \,^{\circ}KA$

HR = ro	HR = горизонтальные выводы для подключения сзади								
LI	57008	57016	57011	57019					
LSI	57009	57017	57012	57020	57014	57022			
LSIG	57010	57018	57013	57021	57015	57023			

E6V 63

Стационарное исполнение (F)

$Iu (40 \,^{\circ}C) = 6300 \,^{\circ}A$ $Icu (415 \,^{\circ}B) = 150 \,^{\circ}KA$ $Icw (1 \,^{\circ}C) = 100 \,^{\circ}KA$


HR = ro	HR = горизонтальные выводы для подключения сзади								
LI	57136	57144	57139	57147					
LSI	57137	57145	57140	57148	57142	57150			
LSIG	57138	57146	57141	57149	57143	57151			

PR121/P 1SDA.....R1

3-полюсный

Автоматические выключатели SACE Emax

E6V 32

Выкатное исполнение (W) - MP

4-попюсный

PR123/P

1SDA.....R1 3-полюсный 4-полюсный

Iu (40 °C) = 3200 A Icu (415 B) = **150** KA Icw (1 c) = 100 KA

4-попюсный

MP =	МР = подвижная часть							
LI	57056	57064	57059	57067				
LSI	57057	57065	57060	57068	57062	57070		
LSIG	57058	57066	57061	57069	57063	57071		

PR122/P

1SDA.....R1

3-полюсный

E6H 40

Выкатное исполнение (W) - MP

lu (40 °C) = 4000 A	Icu (415 B) = 100 κA	Icw (1 c) = 100 KA
lu (40 °C) = 4000 A	Icu (415 B) = IUU KA	Icw (1 c) = IUU K/A

MP = no	одвижная част	Ь					
LI	56960	56968	56963	56971			
LSI	56961	56969	56964	56972	56966	56974	
LSIG	56962	56970	56965	56973	56967	56975	

E6V 40

Выкатное исполнение (W) - MP

	Iu (40 °C) = 4000 A	Icu (415 B) = 150 KA	lcw (1 c) = 100 KA
--	-------------------------------	-----------------------------	--------------------

МР = подвижная часть								
LI	57088	57096	57091	57099				
LSI	57089	57097	57092	57100	57094	57102		
LSIG	57090	57098	57093	57101	57095	57103		

E6H 50

Выкатное исполнение (W) - MP

Iu (40 °C) = 5000 AIcu (415 B) = 100 KAlcw (1 c) = 100 KA

MP = no	МР = подвижная часть								
LI	56992	57000	56995	57003					
LSI	56993	57001	56996	57004	56998	57006			
LSIG	56994	57002	56997	57005	56999	57007			

E6V 50

Выкатное исполнение (W) - MP

Iu $(40 \, ^{\circ}\text{C}) = 5000 \, \text{A}$ Icu (415 B) = 150 KA lcw (1 c) = 100 KA

МР = подвижная часть								
LI	57120	57128	57123	57131				
LSI	57121	57129	57124	57132	57126	57134		
LSIG	57122	57130	57125	57133	57127	57135		

E6H 63

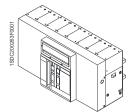
Выкатное исполнение (W) - MP

Iu $(40 \, ^{\circ}\text{C}) = 6300 \, \text{A}$ Icu (415 B) = **100** KA lcw (1 c) = 100 KA

МР = подвижная часть								
LI	57024	57032	57027	57035				
LSI	57025	57033	57028	57036	57030	57038		
LSIG	57026	57034	57029	57037	57031	57039		

E6V 63

Выкатное исполнение (W) - MP


lcw (1 c) = 100 KAIu $(40 \, ^{\circ}\text{C}) = 6300 \, \text{A}$ Icu (415 B) = **150** KA

МР = подвижная часть								
LI	57152	57160	57155	57163				
LSI	57153	57161	57156	57164	57158	57166		
LSIG	57154	57162	57157	57165	57159	57167		

Фиксированная часть стр. 9/51 Выводы стр. 9/53 Дополнительные коды стр. 9/54

Автоматические выключатели SACE Emax с полноразмерным проводником нейтрали

E4H/f 32

Стационарное исполнение (F)

PR121/P PR122/P PR123/P 1SDA.....R1 1SDA.....R1 1SDA.....R1

Ju (40 °C) = 3200 A

4-полюсный

Icu (415 B) = 100 κA

Icw (1 c) = 85 KA

4-полюсный

iu (+0	0) - 0200 / 1	ica (415 b) - 100 ia t	10W (1 C) - 00 10 T
HR = r	оризонтальные выв	оды для подключения сзади	
	F0.400	F0.400	

4-полюсный

HR = ro	НК = горизонтальные выводы для подключения сзади					
LI	59429	59432				
LSI	59430	59433	59435			
LSIG	59431	59434	59436			

E4S/f 40

Стационарное исполнение (F)

$I_{11} (40 ^{\circ}\text{C}) = 4000 \text{A}$	Icu (415 B) = 80 KA	lcw (1 c) = 75 KA

HR = горизонтальные выводы для подключения сзади						
LI	55536	55539				
LSI	55537	55540	55542			
LSIG	55538	55541	55543			

E4H/f 40

Стационарное исполнение (F)

Iu (40 °C) = 4000 A	lcu (415 B) = 100 KA	lcw (1 c) = 85 KA

HR = горизонтальные выводы для подключения сзади				
LI	55520	55523		
LSI	55521	55524	55526	
LSIG	55522	55525	55527	

E4H/f 32

Выкатное исполнение (W) - MP

$Iu (40 \, ^{\circ}C) = 3200 \, A$ $Icu (415 \, B) = 100 \, KA$ $Icw (1 \, c) = 85 \, KA$

MP = no	одвижная часть			
LI	59437	59440		
LSI	59438	59441	59443	
LSIG	59439	59442	59444	

E4S/f 40

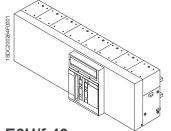
Выкатное исполнение (W) - MP

$lu (40 \, ^{\circ}C) = 4000 \, A$ $lcu (415 \, B) = 80 \, KA$ $lcw (1 \, c) = 75 \, KA$

MP = no	одвижная часть			
LI	55544	55547		
LSI	55545	55548	55550	
LSIG	55546	55549	55551	

E4H/f 40

Выкатное исполнение (W) - MP


Iu (40 °C) = 4000 A Icu (415 B) = 100 KA Icw (1 c) = 85 KA

MP = no	одвижная часть			
LI	55528	55531		
LSI	55529	55532	55534	
LSIG	55530	55533	55535	

Фиксированная часть...... стр. 9/51 Выводы...... стр. 9/53 Дополнительные коды...... стр. 9/54

Автоматические выключатели SACE Emax с полноразмерным проводником нейтрали

E6H/f 40

Стационарное исполнение (F)

Iu (40 °C) = 4000 A Icu (41	5B) = 100 KA Id	cw (1 c) = 100 KA
---------------------------------------	------------------------	-------------------

HR = горизонтальные выводы для подключения сзади				
LI	55552	55555		
LSI	55553	55556	55558	
LSIG	55554	55557	55559	

E6H/f 50

Стационарное исполнение (F)

lu (40 °C) = 5000 A	Icu (415 B) = 100 KA	lcw (1 c) = 100 KA
14 (70 0) - 0000 / L	ICU (+13 D) - 100 IU 1	

HR = горизонтальные выводы для подключения сзади				
LI	55568	55571		
LSI	55569	55572	55574	
LSIG	55570	55573	55575	

E6H/f 63

Стационарное исполнение (F)

Iu (40 °C) =
$$6300 \text{ A}$$
 Icu (415 B) = 100 KA Icw (1 c) = 100 KA

HR = горизонтальные выводы для подключения сзади				
LI	55584	55587		
LSI	55585	55588	55590	
LSIG	55586	55589	55591	

E6H/f 40

Выкатное исполнение (W) - MP

Iu (40 °C) = 4000 AIcu (415 B) = 100 KAIcw (1 c) = 100 KA

МР = подвижная часть				
LI	55560	55563		
LSI	55561	55564	55566	
LSIG	55562	55565	55567	

E6H/f 50

Выкатное исполнение (W) - MP

Iu (40 °C) = 5000 AIcu (415 B) = 100 KA Icw (1 c) = 100 KA

MP = подвижная часть				
LI	55576	55579		
LSI	55577	55580	55582	
LSIG	55578	55581	55583	

E6H/f 63

Выкатное исполнение (W) - MP

Iu (40 °C) = 6300 A Icu (415 B) = 100 KAlcw (1 c) = 100 KA

MP = no	одвижная часть			
LI	55592	55595		
LSI	55593	55596	55598	
LSIG	55594	55597	55599	

Фиксированная часть..... стр. 9/51 Выводы..... Дополнительные коды...... стр. 9/54

Выключатели-разъединители SACE Emax

1SDA.....R1

3-полюсный 4-полюсный

E1B/MS 08

Стационарное исполнение (F)

 $lu (40 \, ^{\circ}C) = 800 \, A$ $lcw (1 c) = 42 \, KA$

HR = горизонтальные выводы для подключения сзади

58931 58932

E1N/MS 08

Стационарное исполнение (F)

Iu (40 °C) = 800 A Icw (1 c) = 50 KA

HR = горизонтальные выводы для подключения сзади

58933 58934

E1B/MS 10

Стационарное исполнение (F) Iu (40 °C) = 1000 A Icw (1 c) = 42 KA

HR = горизонтальные выводы для подключения сзади

59209 59211

E1N/MS 10

Стационарное исполнение (F) lu (40 °C) = 1000 A lcw (1 c) = 50 KA

HR = горизонтальные выводы для подключения сзади

59253 59255

E1B/MS 12

Стационарное исполнение (F)

Iu (40 °C) = 1250 A Icw (1 c) = 42 KA

HR = горизонтальные выводы для подключения сзади

58935 58936

E1N/MS 12

Стационарное исполнение (F)

 $Iu (40 \, ^{\circ}C) = 1250 \, A$ $Icw (1 c) = 50 \, KA$

HR = горизонтальные выводы для подключения сзади

58937 58938

E1B/MS 16

Стационарное исполнение (F) Iu (40 °C) = 1600 A Icw (1 c) = 42 KA

HR = горизонтальные выводы для подключения сзади
58857 58858

E1N/MS 16

Стационарное исполнение (F)

 $Iu (40 \, ^{\circ}C) = 1600 \, A \, Icw (1 \, c) = 50 \, KA$

HR = горизонтальные выводы для подключения сзади
58861 58862

Фиксированная часть...... стр. 9/51 Выводы..... стр. 9/53

Выключатели-разъединители SACE Emax

1SDA.....R1

3-полюсный 4-полюсный

E1B/MS 08

Выкатное исполнение (W) - MP

IU (40 C) = 000 A ICW (1 C) = 42 K	lu (40 °C) =	800 A	Icw (1 c) = 42 I	κA
------------------------------------	--------------	-------	-------------------------	----

MP = подвижная часть					
	58939	58940			

E1N/MS 08

Выкатное исполнение (W) - MP

Iu (40 °C) = 800 A Icw (1 c) =
--

МР = подвижная часть			
	58941	58942	

E1B/MS 10

Выкатное исполнение (W) - MP

lu ((40 °C) =	1000	Α	lcw (1	c)	=42	кА
------	--------	-----	------	---	-------	---	----	-----	----

MP = подвижная часть		
	59210	59212

E1N/MS 10

Выкатное исполнение (W) - MP

$$lu (40 \, ^{\circ}C) = 1000 \, A$$
 $lcw (1 c) = 50 \, KA$

МР = подвижная часть					
	59254	59256			

E1B/MS 12

Выкатное исполнение (W) - MP

Iu (40 °C) =
$$1250 \text{ A}$$
 Icw (1 c) = 42 KA

МР = подвижная часть					
	58943	58944			

E1N/MS 12

Выкатное исполнение (W) - MP

Iu (40 °C) =
$$1250 \text{ A}$$
 Icw (1 c) = 50 KA

МР = подвижная часть		
	58945	58946

E1B/MS 16

Выкатное исполнение (W) - MP

Iu (40 °C) =
$$1600 \text{ A}$$
 Icw (1 c) = 42 KA

MP = подвижная часть		
	58859	58860

E1N/MS 16

Выкатное исполнение (W) - MP

Iu (40 °C) =
$$1600 \text{ A}$$
 Icw (1 c) = 50 KA

МР = подвижная часть			
	58863	58864	

Фиксированная часть.....стр. 9/51

Выводы..... стр. 9/53

1802S00SPF0001			1SDAR1 3-полюсный	4-полюсный
E2N/MS 10	Iu (40 °C) = 1000 A Icw (1 c	e) =55 κ A		
Стационарное	HR = горизонтальные выводы для по	одключения сзади		
исполнение (F)			59297	59299
E2S/MS 10	lu (40 °C) = 1000 A lcw (1 c	e) =65 кA		
Стационарное исполнение (F)	HR = горизонтальные выводы для по	одключения сзади	59341	59343
E2N/MS 12	lu (40 °C) = 1250 A lcw (1 c	e) = 55 κΑ		
Стационарное	HR = горизонтальные выводы для по	одключения сзади	500.47	50040
исполнение (F)			58947	58948
E2S/MS 12	lu (40 °C) = 1250 A lcw (1 c	е) =65 кА		
Стационарное	HR = горизонтальные выводы для по	одключения сзади	58865	58866
исполнение (F)			30003	30000
E2B/MS 16	lu (40 °C) = 1600 A lcw (1 c	e) = 42 KA		
Стационарное	HR = горизонтальные выводы для п	одключения сзади	50040	50050
исполнение (F)			58949	58950
E2N/MS 16	lu (40 °C) = 1600 A lcw (1 c	e) = 55 κ Α		
Стационарное	HR = горизонтальные выводы для п	одключения сзади		
исполнение (F)			58951	58952
E2S/MS 16	lu (40 °C) = 1600 A lcw (1 c	e) = 65 κA		
Стационарное	HR = горизонтальные выводы для п	одключения сзади		
исполнение (F)			58869	58870
E2B/MS 20	lu (40 °C) = 2000 A lcw (1 c	e) =42 KA		
Стационарное	HR = горизонтальные выводы для п	одключения сзади		
исполнение (F)			58953	58954
E2N/MS 20	lu (40 °C) = 2000 A lcw (1 c	e) = 55 κA		
Стационарное исполнение (F)	HR = горизонтальные выводы для п	одключения сзади	58955	58956
E2S/MS 20	lu (40 °C) = 2000 A lcw (1 c	e) =65 κA		
Стационарное	HR = горизонтальные выводы для по	одключения сзади	50070	F0074
исполнение (F)			58873	58874

ABB SACE 9/27

Выводы.....стр. 9/53

Фиксированная часть..... стр. 9/51

МР = подвижная часть

Выключатели-разъединители SACE Emax

1SDA.....R1

59298

3-полюсный 4-полюсный

59300

E2N/MS 10

Выкатное исполнение (W) - MP lu (40 °C) = 1000 A lcw (1 c) = 55 KA

E2S/MS 10

Выкатное исполнение (W) - MP

lu ((40 °C)	=	1000	Δ	lew (1	l c)	=65	кΔ
iu (40 6	_	1000	$\overline{}$	ICW (ı C)	-03	\sim

 MP = подвижная часть
 59342
 59344

E2N/MS 12

Выкатное исполнение (W) - MP

Iu (40 °C) = 1250 A	1cw (1 c) = 55 KA
----------------------------	-------------------

MP = подвижная часть

58957 58958

E2S/MS 12

Выкатное исполнение (W) - MP

Iu (40 °C) = 1250 A	1cw (1 c) = 65 KA
----------------------------	-------------------

MP = подвижная часть
58867 58868

E2B/MS 16

Выкатное исполнение (W) - MP

$$lu (40 \, ^{\circ}C) = 1600 \, A$$
 $lcw (1 c) = 42 \, KA$

 MP = подвижная часть
 58959
 58960

E2N/MS 16

Выкатное исполнение (W) - MP

$$Iu (40 \, ^{\circ}C) = 1600 \, A$$
 $Icw (1 c) = 55 \, KA$

МР = подвижная часть58961 58962

E2S/MS 16

Выкатное исполнение (W) - MP

Iu (40 °C) =
$$1600 \text{ A}$$
 Icw (1 c) = 65 KA

МР = подвижная часть58871 58872

E2B/MS 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 A Icw (1 c) = 42 KA

 MP = подвижная часть
 58963
 58964

E2N/MS 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 A Icw (1 c) = 55 KA

 MP = подвижная часть
 58965
 58966

E2S/MS 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 A Icw (1 c) = 65 KA

 MP = подвижная часть
 58875
 58876

Фиксированная часть...... стр. 9/51 Выводы..... стр. 9/53

190C2002001		1SDAR1 3-полюсный	4-полюсный
E3V/MS 08	Iu (40 °C) = 800 A Icw (1 c) = 85 KA		
Стационарное исполнение (F)	HR = горизонтальные выводы для подключения сзади	58877	58878
E3S/MS 10	Iu (40 °C) = 1000 A Icw (1 c) = 75 KA		
Стационарное исполнение (F)	HR = горизонтальные выводы для подключения сзади	59425	59427
E3S/MS 12	lu (40 °C) = 1250 A lcw (1 c) = 75 KA		
Стационарное	HR = горизонтальные выводы для подключения сзади		
исполнение (F)		58967	58968
E3V/MS 12	lu (40 °C) = 1250 A lcw (1 c) = 85 KA		
Стационарное	HR = горизонтальные выводы для подключения сзади		
исполнение (F)		58881	58882
E3S/MS 16	lu (40 °C) = 1600 A lcw (1 c) = 75 KA		
Стационарное исполнение (F)	HR = горизонтальные выводы для подключения сзади	58969	58970
E3V/MS 16	Iu (40 °C) = 1600 A Icw (1 c) = 85 KA		
Стационарное	HR = горизонтальные выводы для подключения сзади		
исполнение (F)		58885	58886
E3S/MS 20	lu (40 °C) = 2000 A lcw (1 c) = 75 KA		
Стационарное	HR = горизонтальные выводы для подключения сзади	50074	50070
исполнение (F)		58971	58972
E3V/MS 20	Iu (40 °C) = 2000 A Icw (1 c) = 85 KA		
Стационарное	HR = горизонтальные выводы для подключения сзади		
исполнение (F)		58889	58890
E3N/MS 25	lu (40 °C) = 2500 A lcw (1 c) = 65 KA	 	
Стационарное исполнение (F)	HR = горизонтальные выводы для подключения сзади	58973	58974
E3S/MS 25	lu (40 °C) = 2500 A lcw (1 c) = 75 KA	 	
Стационарное	HR = горизонтальные выводы для подключения сзади	50075	50070
исполнение (F)		58975	58976

ABB SACE 9/29

Выводы..... стр. 9/53

Фиксированная часть..... стр. 9/51

Выключатели-разъединители SACE Emax

1SDA.....R1 4-полюсный 3-полюсный

E3V/MS 25

Стационарное исполнение (F)

lu (40 °C) =	2500 A	lcw (1 c	= 85 KA
--------------	--------	----------	----------

HR = горизонтальные выводы для подключения сзади 58893 58894

E3N/MS 32

Стационарное исполнение (F)

Iu (40 °C) =	3200 A	1cw (1 c) = 65 KA
--------------	--------	-------------------

HR = горизонтальные выводы для подключения сзади 58977 58978

E3S/MS 32

Стационарное исполнение (F)

lu (40 °C) = 3200 A	lcw (1 c) = 75 KA
----------------------------	-------------------

HR = горизонтальные выводы для подключения сзади 58979 58980

E3V/MS 32

Стационарное исполнение (F)

Iu (40 °C) = 3200 A	lcw (1 c) = 85 KA
----------------------------	-------------------

HR = горизонтальные выводы для подключения сзади 58897 58898

E3V/MS 08

Выкатное исполнение (W) - MP

Icw (1 c) = 85 KAIu $(40 \, ^{\circ}\text{C}) = 800 \, \text{A}$

МР = подвижная часть 58879 58880

E3S/MS 10

Выкатное исполнение (W) - MP Iu (40 °C) = 1000 A lcw (1 c) = 75 KA

МР = подвижная часть 59428 59426

E3S/MS 12

Выкатное исполнение (W) - MP lu (40 °C) = 1250 A lcw (1 c) = 75 KA

МР = подвижная часть 58981 58982

E3V/MS 12

Выкатное исполнение (W) - MP Iu (40 °C) = 1250 A lcw (1 c) = 85 KA

МР = подвижная часть 58883 58884

E3S/MS 16

Выкатное исполнение (W) - MP

Iu (40 °C) = 1600 A Icw (1 c) = 75 KA

МР = подвижная часть 58983

Фиксированная часть...... стр. 9/51 Выводы......стр. 9/53 58984

1SDC200280F0001			1SDAR1 3-полюсный	4-полюсный
E3V/MS 16	Iu (40 °C) = 1600 A	1cw (1 c) = 85 KA		
Выкатное исполнение (W) - MP	MP = подвижная часть		58887	58888
E3S/MS 20	lu (40 °C) = 2000 A	Icw (1 c) = 75 KA		
Выкатное исполнение (W) - MP	MP = подвижная часть		58985	58986
E3V/MS 20	Iu (40 °C) = 2000 A	Icw (1 c) = 85 KA		
Выкатное исполнение (W) - MP	MP = подвижная часть		58891	58892
E3N/MS 25	lu (40 °C) = 2500 A	Icw (1 c) = 65 KA		
Выкатное исполнение (W) - MP	MP = подвижная часть		58987	58988
E3S/MS 25	lu (40 °C) = 2500 A	Icw (1 c) = 75 KA		
Выкатное исполнение (W) - MP	MP = подвижная часть		58989	58990
E3V/MS 25	lu (40 °C) = 2500 A	Icw (1 c) = 85 KA		
Выкатное исполнение (W) - MP	MP = подвижная часть		58895	58896
E3N/MS 32	Iu (40 °C) = 3200 A	Icw (1 c) = 65 KA		
Выкатное исполнение (W) - MP	MP = подвижная часть		58991	58992
E3S/MS 32	lu (40 °C) = 3200 A	Icw (1 c) = 75 KA		

Фиксированная часть стр. 9/51	Выводы стр. 9/53
Фиксированная частв стр. эг эт	Быводы Стр. 3/ 30

1cw (1 c) = 85 KA

МР = подвижная часть

Iu (40 °C) = 3200 A

МР = подвижная часть

Выкатное

E3V/MS 32

Выкатное

ABB SACE

исполнение (W) - MP

исполнение (W) - MP

58993

58899

58994

58900

Выключатели-разъединители SACE Emax

1SDA.....R1

3-полюсный 4-полюсный

E4H/MS 32

Стационарное исполнение (F)

 $lu (40 \, ^{\circ}C) = 3200 \, A$ $lcw (1 c) = 100 \, KA$

HR = горизонтальные выводы для подключения сзади
58995 58996

E4S/MS 40

Стационарное исполнение (F)

Iu (40 °C) = 4000 A Icw (1 c) = 75 KA

HR = горизонтальные выводы для подключения сзади
58997 58998

E4H/MS 40

Стационарное исполнение (F)

Iu (40 °C) = 4000 A Icw (1 c) = 100 KA

HR = горизонтальные выводы для подключения сзади
58999 59000

E4H/MS 32

Выкатное исполнение (W) - MP Iu (40 °C) = 3200 A Icw (1 c) = 100 KA

МР = подвижная часть59001 59002

E4S/MS 40

Выкатное исполнение (W) - MP Iu (40 °C) = 4000 A Icw (1 c) = 75 KA

 MP = подвижная часть
 59003
 59004

E4H/MS 40

Выкатное исполнение (W) - MP

Iu (40 °C) = 4000 A Icw (1 c) = 100 KA

 MP = подвижная часть
 59005
 59006

Фиксированная часть...... стр. 9/51

Выводы......стр. 9/53

18DC2002EPRODI
6H/MS 40

1SDA.....R1 4-полюсный 3-полюсный

E6H/MS 40

Стационарное исполнение (F)

10 (40 0) - 4000 / 1 10W (1 c) - 100 10	Iu (40 °C	= 4000	Α	lcw (1	c) =	100	kΑ
---	-----------	--------	---	--------	------	-----	----

HR = горизонтальные выводы для подключения сзади 58905 58906

E6H/MS 50

Стационарное исполнение (F)

lu (40 °C) = 5000 A	1cw (1 c) = 100 KA
----------------------------	--------------------

HR = горизонтальные выводы для подключения сзади 59007 59008

E6H/MS 63

Стационарное исполнение (F)

lu (40 °C) =	6300 A	lcw (1 c)=100 KA
--------------	--------	----------	----------

HR = горизонтальные выводы для подключения сзади 59010 59009

E6H/MS 40

Выкатное исполнение (W) - MP

Iu (40 °C) = 4000 A	lcw (1 c) = 100 KA
----------------------------	--------------------

МР = подвижная часть 58908 58907

E6H/MS 50

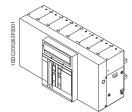
Выкатное исполнение (W) - MP

Iu (40 °C) =
$$5000 \text{ A}$$
 Icw (1 c) = 100 KA

МР = подвижная часть 59011 59012

E6H/MS 63

Выкатное исполнение (W) - MP


$$Iu (40 °C) = 6300 A$$
 $Icw (1 c) = 100 KA$

МР = подвижная часть 59013 59014

Фиксированная часть..... стр. 9/51 Выводы..... стр. 9/53

Выключатели-разъединители SACE Emax с полноразмерным проводником нейтрали

1SDA.....R1 4-полюсный

F4	Н	/f	N	IS	32

Стационарное исполнение (F)

lu (40 °C) = 3200 A	lcw (1 c) = 85 KA
----------------------------	-------------------

HR = горизонтальные выводы для подключения сзади
58901

E4S/f MS 40

Стационарное исполнение (F)

lu	(40 °C)	=	4000	Α	lcw ((1	c)	-80	κА
----	---------	---	------	---	-------	----	----	------------	----

HR = горизонтальные выводы для подключения сзади
59015

E4H/f MS 40

Стационарное исполнение (F)

Iu (40 °C) =
$$4000 \text{ A}$$
 Icw (1 c) = 85 KA

HR = горизонтальные выводы для подключения сзади
58903

E4H/f MS 32

Выкатное исполнение (W) - MP

Iu (40 °C) =
$$3200 \text{ A}$$
 Icw (1s) = 85 KA

МР = подвижная часть58902

E4S/f MS 40

Выкатное исполнение (W) - MP

Iu (40 °C) =
$$4000 \text{ A}$$
 Icw (1 c) = 80 KA

MP = подвижная часть59016

E4H/f MS 40

Выкатное исполнение (W) - MP

Iu
$$(40 \, ^{\circ}\text{C}) = 4000 \, \text{A}$$
 Icw $(1 \, \text{c}) = 85 \, \text{KA}$

MP = подвижная часть
58904

Фиксированная часть...... стр. 9/51

Выводы..... стр. 9/53

15DC2000294F0001
E6H/f MS 40

1SDA.....R1 4-полюсный

Стационарное исполнение (F)

lu	(40 °C)	= 40	000	Α	lcw (1 (c) =	:1	00	кА
----	---------	------	-----	---	-------	-----	------	----	----	----

HR = горизонтальные выводы для подключения сзади

58909

E6H/f MS 50

Стационарное исполнение (F) Iu (40 °C) = 5000 A lcw (1 c) = 100 KA

HR = горизонтальные выводы для подключения сзади

59017

E6H/f MS 63

Стационарное исполнение (F) Iu (40 °C) = 6300 A Icw (1 c) = 100 KA

HR = горизонтальные выводы для подключения сзади

59018

E6H/f MS 40

Выкатное исполнение (W) - MP Iu (40 °C) = 4000 AIcw (1 c) = 100 KA

МР = подвижная часть

58910

E6H/f MS 50

Выкатное исполнение (W) - MP

Icw (1 c) = 100 KAIu $(40 \, ^{\circ}C) = 5000 \, A$

МР = подвижная часть

59019

E6H/f MS 63

Выкатное исполнение (W) - MP Iu $(40 \, ^{\circ}\text{C}) = 6300 \, \text{A}$ lcw (1 c) = 100 KA

МР = подвижная часть

59020

Фиксированная часть..... стр. 9/51 Выводы..... стр. 9/53

Автоматические выключатели SACE Emax на напряжение до 1150 В AC

1SDA.....R1

E2B/E 16

 $Iu (40 \, ^{\circ}C) = 1600 \, A$ $Icu (1150 \, BAC) = 20 \, KA$

59633

Примечание: необходимо указать в дополнение к коду стандартного варианта исполнения автоматического выключателя E2B 16 (Ue=690 B AC), стр. 9/7.

E2B/E 20

Iu $(40 \, ^{\circ}\text{C}) = 2000 \, \text{A}$ Icu $(1150 \, \text{BAC}) = 20 \, \text{KA}$

59634

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E2B 20 (Ue=690 B AC), стр. 9/8.

E2N/E 12

Iu (40 °C) = 1250 A Icu (1150 B AC) = 30 KA

59635

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E2N 12 (Ue=690 B AC), стр. 9/9.

E2N/E 16

 $Iu (40 \, ^{\circ}C) = 1600 \, A$ $Icu (1150 \, BAC) = 30 \, KA$

59636

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E2N 16 (Ue=690 B AC), стр. 9/10.

E2N/E 20

 $lu (40 \, ^{\circ}C) = 2000 \, A$ $lcu (1150 \, BAC) = 30 \, KA$

59637

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E2N 20 (Ue=690 B AC), стр. 9/10.

a

Фиксированная часть.......стр. 9/51 Выводы......стр. 9/53 Дополнительные коды......стр. 9/54

1SDA.....R1

Iu (40 °C) = 1250 A Icu (1150 B AC) = 30 kA

59638

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E3H 12 (Ue = 690 B AC), стр. 9/11

E3H/E 16

Iu (40 °C) = 1600 A Icu (1150 B AC) = 30 kA

59639

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E3H 16 (Ue = 690 B AC), стр. 9/12

E3H/E 20

Iu (40 °C) = 2000 A Icu (1150 B AC) = 30 kA

59640

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E3H 20 (Ue = 690 B AC), стр. 9/12

E3H/E 25

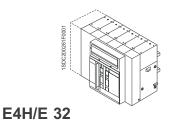
 $Iu (40 \, ^{\circ}C) = 2500 \, A$ $Icu (1150 \, B \, AC) = 30 \, kA$

59641

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E3H 25 (Ue = 690 B AC), стр. 9/13

E3H/E 32

Iu (40 °C) = 3200 A Icu (1150 B AC) = 30 kA


59642

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E3H 32 (Ue = 690 B AC), стр. 9/14

Фиксированная часть стр. 9/51 Выводы стр. 9/53 Дополнительные коды стр. 9/54

Автоматические выключатели SACE Emax на напряжение до 1150 В AC

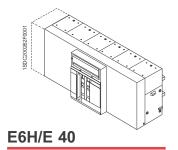
1SDA.....R1

Iu (40 °C) = **3200 A**

Icu (1150 B AC) = 65 KA

59643

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E4H 32 (Ue=690 B AC), стр. 9/19.


E4H/E 40

Iu (40 °C) = 4000 A

Icu (1150 B AC) = 65 KA

59644

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E4H 40 (Ue=690 B AC), стр. 9/19.

1SDA.....R1

lu (40 °C) = **4000 A**

Icu (1150 B AC) = 65 KA

58550

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E4H 40 (Ue=690 B AC), стр. 9/21.

Iu (40 °C) = 5000 A

Icu (1150 B AC) = 65 KA

58551

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E4H 50 (Ue=690 B AC), стр. 9/21.

E6H/E 63

E6H/E 50

Iu (40 °C) = 6300 A

Icu (1150 B AC) = 65 KA

58552

Примечание: необходимо указать в дополнение к коду стандартного исполнения автоматического выключателя E4H 63 (Ue=690 B AC), стр. 9/21.

Фиксипора

Фиксированная часть

. **стр. 9**/51

Выводы ..

стр. 9/53

Дополнительные коды ..

.. **стр. 9**/54

Выключатели-разъединители SACE Emax на напряжение до 1150 В AC

1SDA.....R1

Iu (40 °C) = 1600 A Icw (1 c) = 20 KA

50000

Примечание: необходимо указать вместе с кодом стандартного исполнения автоматического выключателя (Ue=690 В АС), стр. 9/7

E2B/E MS 20

Iu (40 °C) = 2000 A

lcw (1 c) = 20 KA

59634

Примечание: необходимо указать вместе с кодом стандартного исполнения автоматического выключателя (Ue=690 В АС), стр. 9/7

E2N/E MS 12

Iu (40 °C) = 1250 A

Icw (1 c) = 30 KA

59635

Примечание: необходимо указать вместе с кодом стандартного исполнения автоматического выключателя (Ue=690 В АС), стр. 9/7

E2N/E MS 16

Iu (40 °C) = 1600 A

Icw (1 c) = 30 KA

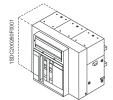
59636

Примечание: необходимо указать вместе с кодом стандартного исполнения автоматического выключателя (Ue=690 В АС), стр. 9/8

E2N/E MS 20

Iu (40 °C) = 2000 A

Icw (1 c) = 30 KA


59637

примечание: необходимо указать вместе с кодом стандартного исполнения автоматического выключателя (Ue=690 B AC), стр. 9/8

Фиксированная часть стр. 9/51 Выводы стр. 9/53

Выключатели-разъединители SACE Emax на напряжение до 1150 В AC

1SDA.....R1 3-полюсный 4-полюсный

E3H/E MS 12

Стационарное исполнение (F)

E3H/E MS 16

Стационарное исполнение (F)

E3H/E MS 20

Стационарное исполнение (F)

E3H/E MS 25

Стационарное исполнение (F)

E3H/E MS 32

Стационарное исполнение (F)

lu (40 °C) = 1250 A lcw (1 c) = 30 KA

HR =горизонтальные выводы для подключения сзади						
Код автоматического выключателя	59021	59022				
Дополнительный код, который необходимо указать						
с кодом автоматического выключателя	59638	59638				

 $lu (40 \, ^{\circ}C) = 1600 \, A$ $lcw (1 c) = 30 \, KA$

HR =горизонтальные выводы для подключения сзади						
Код автоматического выключателя	59023	59024				
Дополнительный код, который необходимо указать						
с кодом автоматического выключателя	59639	59639				

 $lu (40 \, ^{\circ}C) = 2000 \, A$ $lcw (1 c) = 30 \, KA$

HR =горизонтальные выводы для подключения сзади						
Код автоматического выключателя	59025	59027				
Дополнительный код, который необходимо указать						
с кодом автоматического выключателя	59640	59640				

 $lu (40 \, ^{\circ}C) = 2500 \, A$ $lcw (1 c) = 30 \, KA$

HR =горизонтальные выводы для подключения сзади			
Код автоматического выключателя	59026	59028	
Дополнительный код, который необходимо указать			
с кодом автоматического выключателя	59641	59641	

 $Iu (40 \, ^{\circ}C) = 3200 \, A$ $Icw (1 c) = 30 \, KA$

HR =горизонтальные выводы для подключения сзади		
Код автоматического выключателя	59029	59030
Дополнительный код, который необходимо указать		
с кодом автоматического выключателя	59642	59642

Фиксированная часть стр. 9/51 Выводы стр. 9/53

1SDA.....R1 3-полюсный 4-полюсный

E3H/E MS 12

Выкатное исполнение (W) - MP

Iu (40 °C) = 1	250 A	Icw (1 c) =	30	кА
----------------	-------	-------------	----	----

МР = подвижная часть		
Код автоматического выключателя	59031	59032
Дополнительный код, который необходимо указать		
с кодом автоматического выключателя	59638	59638

E3H/E MS 16

Выкатное исполнение (W) - MP

Iu (40 °C) = 1600 A	1cw (1 c) = 30 KA
----------------------------	-------------------

MP = подвижная часть		
Код автоматического выключателя	59033	59034
Дополнительный код, который необходимо указать		
с кодом автоматического выключателя	59639	59639

E3H/E MS 20

Выкатное исполнение (W) - MP

Iu (40 °C) = 2000 A Icw (1 c) = 30 KA

МР = подвижная часть		
Код автоматического выключателя	59035	59036
Дополнительный код, который необходимо указать		
с кодом автоматического выключателя	59640	59640

E3H/E MS 25

Выкатное исполнение (W) - MP

Iu (40 °C) = 2500 A Icw (1 c) = 30 KA

МР = подвижная часть		
Код автоматического выключателя	59037	59038
Дополнительный код, который необходимо указать		
с колом автоматического выключателя	59641	59641

E3H/E MS 32

Выкатное исполнение (W) - MP

Iu (40 °C) = 3200 A Icw (1 c) = 30 KA

МР = подвижная часть		
Код автоматического выключателя	59039	59040
Дополнительный код, который необходимо указать		
с кодом автоматического выключателя	59642	59642

Фиксированная часть	crn 9/51	Выволы	ctn 9/53

Выключатели-разъединители SACE Emax на напряжение до 1150 В АС

1SDA.....R1

Iu (40 °C) = 3200 A

lcw (1 c) = 65 kA

59643

Примечание: необходимо указать в дополнение к коду стандартного варианта исполнения автоматического выключателя E4H/MS 32 (Ue=690 B AC), стр. 9/32.

E4H/E MS 40

Iu (40 °C) = 4000 A

lcw (1 c) = 65 kA

59644

Примечание: необходимо указать в дополнение к коду стандартного варианта исполнения автоматического выключателя E4H/MS 40 (Ue=690 B AC), стр. 9/32.

1SDA.....R1

Iu (40 °C) = 4000 A

lcw (1 c) = 65 kA

58550

Примечание: необходимо указать в дополнение к коду стандартного варианта исполнения автоматического выключателя E6H/MS 40 (Ue=690 B AC), стр. 9/33.

E6H/E MS 50

Iu $(40 \, ^{\circ}\text{C}) = 5000 \, \text{A}$

lcw (1 c) = 65 kA

58551

Примечание: необходимо указать в дополнение к коду стандартного варианта исполнения автоматического выключателя E6H/MS 50 (Ue=690 B AC), стр. 9/33.

E6H/E MS 63

Iu (40 °C) = 6300 A

lcw (1 c) = 65 kA

58552

Примечание: необходимо указать в дополнение к коду стандартного варианта исполнения автоматического выключателя E6H/MS 63 (Ue=690 B AC), стр. 9/33.

Фиксированная часть

.. **стр. 9**/51

Выводы ..

... **стр. 9**/53

Выключатели-разъединители SACE Emax на напряжение до 1000 В DC

1SDA.....R1

3-полюсный 750B DC 4-полюсный 1000B DC

E1B/E MS 08

Стационарное исполнение (F)

 $lu (40 \, ^{\circ}C) = 800 \, A$ $lcw (1 c) = 20 \, KA$

59041 59042

E1B/E MS 12

Стационарное исполнение (F) Iu (40 °C) = 1250 A Icw (1 c) = 20 KA

HR =горизонтальные выводы для подключения сзади

59043 59044

E1B/E MS 08

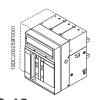
Выкатное исполнение (W) - MP Iu (40 °C) = 800 A Icw (1 c) = 20 KA

МР = подвижная часть

59045 59046

E1B/E MS 12

Выкатное исполнение (W) - MP Iu (40 °C) = 1250 A Icw (1 c) = 20 KA


МР = подвижная часть

59047 59048

Фиксированная часть стр. 9/51 Выводы стр. 9/53

Выключатели-разъединители SACE Emax на напряжение до 1000 В DC

1SDA.....R1

3-полюсный 750B DC 4-полюсный 1000B DC

E2N/E MS 12

Стационарное исполнение (F) Iu (40 °C) = 1250 A Icw (1 c) = 25 KA

HR =горизонтальные выводы для подключения сзади

59049 59050

E2N/E MS 16

Стационарное исполнение (F)

Iu (40 °C) = 1600 A Icw (1 c) = 25 KA

HR =горизонтальные выводы для подключения сзади 59051 59052

E2N/E MS 20

Стационарное исполнение (F)

lu (40 °C) = 2000 A lcw (1 c) = 25 KA

HR =горизонтальные выводы для подключения сзади 59053 59054

E2N/E MS 12

Выкатное исполнение (W) - MP Iu (40 °C) = 1250 A Icw (1 c) = 25 KA

 MP = подвижная часть
 59055
 59056

E2N/E MS 16

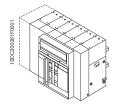
Выкатное исполнение (W) - MP Iu (40 °C) = 1600 A Icw (1 c) = 25 KA

 MP = подвижная часть
 59057
 59058

E2N/E MS 20

Выкатное исполнение (W) - MP Iu (40 °C) = 2000 A Icw (1 c) = 25 KA

 MP = подвижная часть
 59059
 59060


Фиксированная часть стр. 9/51 Выводы стр. 9/53

	١
w	1
	١
۳.	4

18DCZOOZBILDOUL			1SDAR1 3-полюсный 750B DC	4-полюсный 1000B DC
E3H/E MS 12	Iu (40 °C) = 1250 A Icw (1 c) = 40 KA			
Стационарное исполнение (F)	HR =горизонтальные выводы для подключения сзади	И	59061	59062
E3H/E MS 16	Iu (40 °C) = 1600 A Icw (1 c) = 40 KA			
Стационарное исполнение (F)	HR =горизонтальные выводы для подключения сзади	и	59063	59064
E3H/E MS 20	Iu (40 °C) = 2000 A Icw (1 c) = 40 KA			
Стационарное исполнение (F)	HR =горизонтальные выводы для подключения сзада	И	59065	59066
E3H/E MS 25	Iu (40 °C) = 2500 A Icw (1 c) = 40 KA			
Стационарное	HR =горизонтальные выводы для подключения сзада	И		
исполнение (F)			59067	59068
E3H/E MS 32	lu (40 °C) = 3200 A lcw (1 c) = 40 KA			
Стационарное	HR =горизонтальные выводы для подключения сзада	И	59069	59070
исполнение (F)				
E3H/E MS 12	Iu (40 °C) = 1250 A Icw (1 c) = 40 KA			
Выкатное исполнение (W) - MP	МР = подвижная часть		59071	59072
E3H/E MS 16	lu (40 °C) = 1600 A lcw (1 c) = 40 KA			
Выкатное	MP = подвижная часть		59073	59074
исполнение (W) - MP			33073	33074
E3H/E MS 20	Iu (40 °C) = 2000 A Icw (1 c) = 40 KA			
Выкатное исполнение (W) - MP	MP = подвижная часть		59075	59076
E3H/E MS 25	Iu (40 °C) = 2500 A Icw (1 c) = 40 KA			
Выкатное	MP = подвижная часть		50077	50070
исполнение (W) - MP			59077	59078
E3H/E MS 32	lu (40 °C) = 3200 A lcw (1 c) = 40 KA			
Выкатное	MP = подвижная часть		59079	059080
исполнение (W) - MP				
	Фиксированная часть стр. 9/51 Выводы	стр. 9/5	53	

Выключатели-разъединители SACE Emax на напряжение до 1000 В DC

1SDA.....R1 3-полюсный 750B DC

4-полюсный 1000B DC

E4H/E MS 32

Стационарное исполнение (F) Iu (40 °C) = 3200 A Icw (1 c) = 65 KA

HR =горизонтальные выводы для подключения сзади

59081 58911

E4H/E MS 40

Стационарное исполнение (F)

Iu (40 °C) = 4000 A Icw (1 c) = 65 KA

HR =горизонтальные выводы для подключения сзади

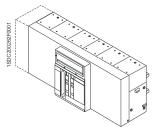
59082 58913

E4H/E MS 32

Выкатное исполнение (W) - MP $lu (40 \, ^{\circ}C) = 3200 \, A$ $lcw (1 c) = 65 \, KA$

МР = подвижная часть

59083 58912


E4H/E MS 40

Выкатное исполнение (W) - MP Iu (40 °C) = 4000 A Icw (1c) = 65 KA

МР = подвижная часть

59084 58914

Фиксированная часть стр. 9/51 Выводы стр. 9/53

1SDA.....R1 3-полюсный 750B DC

4-полюсный 1000B DC

	/ .			40
	H/I	_ N	/I 📞	4 0
$-\mathbf{u}$		_		+v

Стационарное исполнение (F)

$Iu (40 ^{\circ}C) = 4000 A Icw (1 c) = 65 K$	lu (40 °	4000 A	cw (1 c	c) = (65	кА
--	----------	--------	---------	---------------	----	----

HR =горизонтальные выводы для подключения сзади
58915 58921

E6H/E MS 50

Стационарное исполнение (F)

HR =горизонтальные выводы для подключения сзади 58917 58923

E6H/E MS 63

Стационарное исполнение (F)

Iu (40 °C) = 6300 A	lcw (1 c) = 65 KA
----------------------------	-------------------

HR =горизонтальные выводы для подключения сзади
58919 58925

E6H/E MS 40

Выкатное исполнение (W) - MP

lu ((40 °C) =	4000	Α	Icw (1	l c) =	65	кА	
------	--------	-----	------	---	--------	-----	-----	----	----	--

 MP = подвижная часть
 58916
 58922

E6H/E MS 50

Выкатное исполнение (W) - MP

Iu (40 °C) = 5000 A	Icw (1 c) = 65 KA
----------------------------	-------------------

МР = подвижная часть58918 58924

E6H/E MS 63

Выкатное исполнение (W) - MP

Iu (40 °C) = 6300 A Icw (1 c) = 65 KA

 MP = подвижная часть
 58920
 58926

Фиксированная часть стр. 9/51 Выводы стр. 9/53

Выкатные разъединители SACE Emax CS

1SDA.....R1 3-полюсный

4-полюсный

E1/CS 12

Выкатное исполнение (W) - MP lu (40 °C) = 1250 A

МР = подвижная часть59085 59086

E2/CS 20

Выкатное исполнение (W) - MP Iu (40 °C) = 2000 A

МР = подвижная часть59087 59088

E3/CS 32

Выкатное исполнение (W) - MP lu (40 °C) = 3200 A

MP = подвижная часть

59089 59090

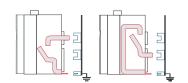
E4/CS 40

Выкатное исполнение (W) - MP Iu $(40 \, ^{\circ}\text{C}) = 4000 \, \text{A}$

 MP = подвижная часть
 59091
 59092

E6/CS 63

Выкатное исполнение (W) - MP Iu (40 °C) = 6300 A


 MP = подвижная часть
 59093
 59094

Фиксированная часть стр. 9/51

9/48

Заземляющие разъединители SACE Emax MTP

Заземление верхних выводов

Заземление нижних выводов

1SDA.....R1

3-полюсный 4-полюсный

1SDA.....R1 3-полюсный

4-полюсный

E1 MTP 12

Выкатное исполнение (W) - MP Iu (40 °C) = 1250 A

 MP = подвижная часть
 59095
 59097
 59096
 59098

E2 MTP 20

Выкатное исполнение (W) - MP Iu (40 °C) = 2000 A

МР = подвижная часть59099 59101 59100 59102

E3 MTP 32

Выкатное исполнение (W) - MP

Iu (40 °C) = 3200 A

МР = подвижная часть59103 59105 59104 59106

E4 MTP 40

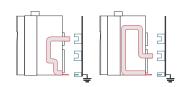
Выкатное исполнение (W) - MP

Iu (40 °C) = 4000 A

МР = подвижная часть59107 59109 59108 59110

E6 MTP 63

Выкатное исполнение (W) - MP


Iu (40 °C) = 6300 A

МР = подвижная часть				
	59111	59113	59112	59114

Фиксированная часть стр. 9/51

Выкатные заземлители SACE Emax MT

Заземление верхних выводов

Заземление нижних выводов

1SDA.....R1

3-полюсный 4-полюсный

1SDA.....R1

3-полюсный 4-полюсный

E1 MT 12

Выкатное исполнение (W) - MP Iu (40 °C) = 1250 A

МР = подвижная часть				
	59115	59117	59116	59118

E2 MT 20

Выкатное исполнение (W) - MP Iu (40 °C) = 2000 A

МР = подвижная часть					
	59119	59121	59120	59122	

E3 MT 32

Выкатное исполнение (W) - MP Iu (40 °C) = 3200 A

МР = подвижная часть				
	59123	59125	59124	59126

E4 MT 40

Выкатное исполнение (W) - MP

Iu (40 °C) = 4000 A

МР = подвижная часть					
	59127	59129	59128	59130	

E6 MT 63

Выкатное исполнение (W) - MP

Iu (40 °C) = 6300 A

МР = подвижная часть					
	59131	59133	59132	59134	

Фиксированная часть стр. 9/51

SACE Emax FP - фиксированная часть

		750 B DC	1000 B DC
1SDAR1 3-полюсный	4-полюсный	1SDAR1 3-полюсный	4-полюсный

E1

Выкатное исполнение (W) - FP

FP = фиксированная часть				
HR	59666	59762	59890	59902
VR	59672	59770	59894	59905
F	59678	59778		
FL	59684	59786	59898	59908
HR-VR	59690	59794		
VR-HR	59708	59818		

E2

Выкатное исполнение (W) - FP

FP = фиксированная часть				
HR	59667	59763	59891	59903
VR	59673	59771	59895	59906
F	59679	59779		
FL	59685	59787	59899	59909
HR-VR	89691	59795		
VR-HR	59709	59819		

E2S

Выкатное исполнение (W) - FP

FP = фиксированная часть		
HR	59668	59764
VR	59674	59772
F	59680	59780
FL	59686	59788
HR-VR	89692	59796
VR-HR	59710	59820

E3

Выкатное исполнение (W) - FP

FP = фиксированная часть				
HR	59669	59765	59892	59904
VR	59675	59773	59896	59907
F	59681	59781		
FL	59687	59789	59900	59910
HR-VR	59693	59797		
VR-HR	59711	59821		

E4

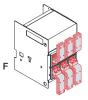
Выкатное исполнение (W) - FP

HR	59670	59766	59893	59136
VR	59676	59774	59897	59137
F	59682	59782		
FL	59688	59790	59901	59138
HR-VR	59694	59798		
VR-HR	59712	59822		

E4/f

Выкатное исполнение (W) - FP

FP = фиксированная часть		
HR	59767	
VR	59775	
F	59783	
FL	59791	
HR-VR	59799	
VR-HR	59823	


Примечание: HR-VR = верхние горизонтальные выводы для подключения сзади, нижние вертикальные выводы для подключения сзади VR-HR = верхние вертикальные выводы для подключения сзади, нижние горизонтальные выводы для подключения сзади

SACE Emax FP - фиксированная часть

		750 B DC	1000 B DC
1SDAR1 3-полюсный	4-полюсный	1SDAR1 3-полюсный	4-полюсный

E6

Выкатное исполнение (W) - FP

FP = фиксированная часть				
HR	59671	59768	59139	59142
VR	59677	59776	59140	59143
F	59683	59784		
FL	59689	59792	59141	59144
HR-VR	59695	59800		
VR-HR	59713	59824		

E6/f

Выкатное исполнение (W) - FP

FP = фиксированная часть		
HR	59769	
VR	59777	
F	59785	
FL	59793	
HR-VR	59801	
VR-HR	59825	

Примечание: HR-VR = верхние горизонтальные выводы для подключения сзади, нижние вертикальные выводы для подключения сзади
VR-HR = верхние вертикальные выводы для подключения сзади, нижние горизонтальные выводы для подключения сзади

9/52 ABB SACE

Комплекты преобразования для стационарных автоматических выключателей или фиксированных частей

1SDAR1	
3-полюсный	4-полюсный

для стационарных автоматических выключателей или фиксированных частей

Комплект для преобразования стационарных автоматических выключателей с задними горизонтальными Комплекты преобразования выводами в выключатель с задними вертикальными выводами.

<u>E1</u>	38052	38057
E2	38053	38058
E3	38054	38059
E4	38055	38060
E6	38056	38061
E4/f	_	48720
E6/f	-	50833

Примечание: каждый комплект можно использовать для преобразования как верхних. так и нижних выводов, Для полного преобразования автоматического выключателя необходимо 2 комплекта

Комплект для преобразования стационарных автоматических выключателей с задними горизонтальными			
выводами в выключатель с передними выводами.			
E1	38062	38067	_
F2	38063	38068	

E1	30002	30007
E2	38063	38068
E3	38064	38069
E4	38065	38070
E6	38066	38071
E4/f	-	48719
E6/f	-	50834

Примечание: каждый комплект можно использовать для преобразования как верхних, так и нижних выводов Для полного преобразования автоматического выключателя необходимо 2 комплекта

Комплект для преобразования фиксированных частей с задними горизонтальными выводами в фиксированные части с передними выводами.

E6/f		50837
E4/f	_	48718
E6	45034	45038
E4	45033	45037
E3	45032	45036
E2	45031	45035
E1	38062	38067

Примечание: каждый комплект можно использовать для преобразования как верхних, так и нижних выводов. Для полного преобразования фиксированной части необходимо 2 комплекта.

Комплект для преобразования фиксированных частей с задними горизонтальными выводами в

E1	55481	55486
E2	55482	55487
E3	55483	55488
4	55484	55489
E6	55485	55490
E4/f	_	58537
E6/f	_	58538

Примечание: каждый комплект можно использовать для преобразования как верхних, так и нижних выводов. Для полного преобразования фиксированной части необходимо 2 комплекта.

Комплект для преобразования фиксированных частей с задними вертикальными выводами в

фиксированные части с задними горизонтальными выводами.			
E1	55491	55496	
E2	55492	55497	
E3	55493	55498	
E4	55494	55499	
E6	55495	55500	
E4/f	_	58539	
E6/f	_	58540	

Примечание: каждый комплект можно использовать для преобразования как верхних. так и нижних выводов Для полного преобразования фиксированной части необходимо 2 комплекта

Комплект для преобразования фиксированной части старого исполнения в новое исполнение. E1/E6 59645

ABB SACE 9/53

Дополнительные коды

1SDA.....R1

Дополнительные коды для номинального тока

Укажит	Укажите вместе с кодом автоматического выключателя стандартного исполнения.		
E1-E3	In = 400A	58235	
E1-E3	In = 630A	58236	
E1-E6	In = 800A	58237	
E1-E6	In = 1000A	58238	
E1-E6	In = 1250A	58240	
E1-E6	In = 1600A	58241	
E2-E6	In = 2000A	58242	
E3-E6	In = 2500A	58243	
E3-E6	In = 3200A	58245	
E4-E6	In = 4000A	58247	
E6	In = 5000A	58248	
E6	In = 6300A	58249	

Дополнительные коды для выбора способа подключения блока PR 120/V

Укажите для PR122/P и PR123/P, если входной сигнал для измерения напряжения необходимо снять с клеммника/ скользящих контактов, а не за счет внутреннего подключения к нижним выводам.

PR120/V - Внешнее подключение	58250
PR120/V - Внутреннее подключение к верхним выводам	58251

9/54 ABB SACE

Аксессуары SACE Emax

1SDA.....R1

Электрические аксессуары

Реле отключения - YO (1a)

	` '	
E1/6	24B DC	38286
E1/6	30B AC / DC	38287
E1/6	48B AC / DC	38288
E1/6	60B AC / DC	38289
E1/6	110120B AC / DC	38290
E1/6	120127B AC / DC	38291
E1/6	220240B AC / DC	38292
E1/6	240250B AC / DC	38293
E1/6	380400B AC	38294
E1/6	440480B AC	38295

Примечание: Конструкция реле отключения (YO) и реле включения (YC)

идентична, поэтому они являются взаимозаменяемыми. Их предназначение определяется местом установки на автоматическом выключателе.

Второе реле отключения – YO2 (1а)

E1/6	24B DC	50157
E1/6	30B AC / DC	50158
E1/6	48B AC / DC	50159
E1/6	60B AC / DC	50160
E1/6	110120B AC / DC	50161
E1/6	120127B AC / DC	50162
E1/6	220240B AC / DC	50163
E1/6	240250B AC / DC	50164
E1/6	380400B AC	50165
E1/6	440480B AC	50166

Примечание: поставляется со специальным основанием для монтажа.

Реле включения - ҮС (1а)

	` ,	
E1/6	24B DC	38296
E1/6	30B AC / DC	38297
E1/6	48B AC / DC	38298
E1/6	60B AC / DC	38299
E1/6	110120B AC / DC	38300
E1/6	120127B AC / DC	38301
E1/6	220240B AC / DC	38302
E1/6	240250B AC / DC	38303
E1/6	380400B AC	38304
E1/6	440480B AC	38305

Примечание: Конструкция реле отключения (YO) и реле включения (YC)

идентична, поэтому они являются взаимозаменяемыми. Их предназначение определяется местом установки на автоматическом выключателе.

Тестовый блок SOR - (1b)

E1/6	50228

ABB SACE **9**/55

Аксессуары SACE Emax

1SDA.....R1

Расцепитель минимального напряжения - YU (2a)

-	. ,	
E1/6	24B DC	38306
E1/6	30B AC / DC	38307
E1/6	48B AC / DC	38308
E1/6	60B AC / DC	38309
E1/6	110120B AC / DC	38310
E1/6	120127B AC / DC	38311
E1/6	220240B AC / DC	38312
E1/6	240250B AC / DC	38313
E1/6	380400B AC	38314
E1/6	440480B AC	38315

Устройство задержки срабатывания расцепителя минимального напряжения— D (2b)

E1/6	2430B AC / DC	38316
E1/6	48B AC / DC	38317
E1/6	60B AC / DC	38318
E1/6	110127B AC / DC	38319
E1/6	220250B AC / DC	38320

Мотор-редуктор для автоматического взведения пружин включения – M (3)

	· /	
E1/6	2430B AC / DC	38321
E1/6	4860B AC / DC	38322
E1/6	100130B AC / DC	38323
E1/6	220250B AC / DC	38324

Примечание: комплект стандартной поставки включает в себя концевой контакт и микровыключатель, срабатывающий

при взведении пружин включения (вспомогательное устройство 5 d).

Электрическая сигнализация срабатывания расцепителей защиты – (4а)

Электрическая сигнализация срабатывания расцепителей защиты с возможностью дистанционного сброса – (4b)

		 •	 \ /	
E1/6	220240B AC/DC		58261	
E1/6	110130B AC/DC		58262	
E1/6	2430B AC/DC		58263	

9/56 ABB SACE

Электрическая сигнализация состояний "разомкнут"/"замкнут" автоматического выключателя - Q1 ... 10 - (5a)

E1/6 - PR121/P	4 дополнительных контакта	38326 (a)
E1/6 - PR121/P	4 дополнительных контакта для цифровых сигналов	50153
E1/6 - PR121/P	10 дополнительных контактов (поставляются в сборе)	46523 (b)
E1/6 - PR121/P	10 дополнительных контактов (поставляются отдельно)	38327 (c)
E1/6 - PR121/P	10 дополнительных контактов для цифровых сигналов	50152
E1/6 - PR122-3/P	4 дополнительных контакта (2NA+2NC+2PR122-3)	58264 (d)
E1/6 - PR122-3/P	4 дополнительных контакта (2NA+2NC+2PR122-3) для цифровых сигналов	58265
E1/6 - PR122-3/P	10 дополнительных контактов (5NA+5NC+2PR122-3 - поставляются в сборе)	58267 (b)
E1/6 - PR122-3/P	10 дополнительных контактов (5NA+5NC+2PR122-3 – поставляются отдельно)	58266 (c)
E1/6 - PR122-3/P	10 дополнительных контакта (5NA+5NC+2PR122-3) для цифровых сигналов	58268
E1/6 MS - E1/6 MTP	4 дополнительных контакта	38326
E1/6 MS - E1/6 MTP	4 дополнительных контакта для цифровых сигналов	50153
E1/6 MS - E1/6 MTP	10 дополнительных контактов	38327
E1/6 MS - E1/6 MTP	10 дополнительных контактов для цифровых сигналов	50152

Примечание: (a) Уже включены в комплект поставки автоматического выключателя с PR121/P. Можно заказать отдельно.

- (b) Можно заказать только установленные на автоматический выключатель.
- (с) Можно заказать только отдельно.
- (d) Уже включены в комплект поставки автоматических выключателей с PR122/P и PR123/P. Можно заказать отдельно

Внешние дополнительные контакты состояний

"разомкнут"/"замкнут" автоматического выключателя - Q11 ... 25 - (5b)

E1/6	15 дополнительных контактов	43475
E1/6	15 дополнительных контактов (для выкатного выключателя)	48827
E1/6	15 дополнительных контактов для цифровых сигналов	50145
E1/6	15 дополнительных контактов для цифровых сигналов (для выкатного выключателя)	50151

Примечание: вне автоматического выключателя. Заказывается вместо различных механических блокировок (устройство 10) и механических замков двери отделения (устройство 8f). Для установки на стационарный автоматический выключатель также необходимо устройство 10.4 (пластина взаимной блокировки для стационарных автоматических выключателей).

1SDA....R1 3-полюсный 4-полюсный

Электрическая сигнализация положений автом. выключателя «установлен», «выкачен для тестирования»», «выкачен», S75 - (5c)

E1/6	5 дополнительных контактов	38361	38361
E1-E2	10 дополнительных контактов	38360	43467
E3	10 дополнительных контактов	43468	43469
E4-E6	10 дополнительных контактов	43470	43470
E1/6	5 дополнительных контактов для цифровых сигналов	50146	50146
E1-E2	10 дополнительных контактов для цифровых сигналов	50147	50148
E4-E6	10 дополнительных контактов для цифровых сигналов	50147	50147
E3	10 дополнительных контактов для цифровых сигналов	50149	50150

Контакт для сигнализации взведения пружин включения S33 M/2- (5d)

Примечание: входит в комплект поставки мотор-редуктора для автоматического взведения пружин включения.

Контакт для сигнализации отключения питания расцепителя минимального напряжения - (5e)

E1/6	1 нормально замкнутый контакт	38341
E1/6	1 нормально разомкнутый контакт	38340

ABB SACE 9/57

Аксессуары SACE Emax


1SDA.....R1

Датчик тока для проводника нейтрали вне автоматического выключателя UI/N - (6a)

E1-E2-E4	Iu N = 2000A	58191
E3-E6	lu N = 3200A	58218
E4/f	Iu N = 4000A	58216
E6/f	lu N = 6300A	58220

Примечание: lu N относится к максимальной допустимой нагрузке проводника нейтрали.

Униполярный тороид для проводника заземления источника питания (средняя точка трансформатора при соединении "в звезду") UI/O - (6b)

59145

Дополнительные

механические аксессуары

Механический счетчик числа коммутаций – (7)

E1/6	38345

Замок для блокировки в разомкнутом состоянии - (8a-8b)

E1/6	для одного автоматического выключателя (разные ключи)	58271
E1/6	для группы автоматических выключателей (один и тот же ключ N.20005)	58270
E1/6	для группы автоматических выключателей (один и тот же ключ N.20006)	58274
E1/6	для группы автоматических выключателей (один и тот же ключ N.20007)	58273
E1/6	для группы автоматических выключателей (один и тот же ключ N.20008)	58272

Примечание: (a) Заказывается вместо защитной крышки кнопки выключения и включения (устройство 9a).

Блокировка автоматического выключателя в положениях "установлен", "выкачен для тестирования", "извлечен" - (8c)

,	, , , , ,	(/
E1/6	для одного автоматического выключателя (разные ключи)	58278
E1/6	для группы автоматических выключателей (один и тот же ключ N.20005)	58277
E1/6	для группы автоматических выключателей (один и тот же ключ N.20006)	58281
E1/6	для группы автоматических выключателей (один и тот же ключ N.20007)	58280
E1/6	для группы автоматических выключателей (один и тот же ключ N.20008)	58279

Блокировка автоматического выключателя в положениях "выкачен для тестирования", "выкачен" - (8d)

E1/6 38357		 	·	. ,	
	E1/6				38357

Примечание: всегда заказывается для дополнения блокировки автоматического выключателя в положениях "выкачен для тестирования", "выкачен" (устройство 8c).

Устройство для навесного замка шторки – (8е)

E1/6		38363

9/58

Механический замок двери отделения – (8f)

45039

Заказывается с фиксатором для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя (устройство 10.2).

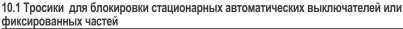
- Для стационарного выключателя также закажите пластину взаимной блокировки 10.4.
- Заказывайте вместо тросиков взаимной блокировки (устройство 10.1) и 15 дополнительных контактов (устройство 5b).

Защитная крышка кнопок выключения и включения - (9а)

E1/6 38343

Примечание: Заказывается вместо устройства для навесного замка (устройство 8b).

Защита IP54 - (9b)


E1/6	38344

Пломбирование расцепителя защиты – (9с)

E1/6 для PR121	58316
Е1/6 для PR122/PR123	58317

Механическая блокировка – (10)

Инструкции приведены на стр. 9/63 и далее.

_ 1,70	В торисоптальный		00002
E1/6	A - вертикальный		38333
E1/6	В - вертикальный		38334
E1/6	С - вертикальный		38335
E1/6	D - вертикальный		38336
Примечание:	Заказывается один комплект для одного типа блокировки		
		1SDAR1 3-полюсный	4-полюсный

10.2 Блокировка для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя

E1-E2	38366	38366
E3	38367	38367
E4	38368	43466
E6	43466	38369

Примечание: Заказывайте по одному вспомогательному устройству для каждого стационарного автоматического выключателя/каждой подвижной части выкатного автоматического выключателя

10.3 Блокировка для стационарного автоматического выключателя/фиксированной части выкатного автоматического выключателя

E1/6	Блокировка A / B /D	38364
E1/6	Блокировка С	38365

Примечание: Заказывайте по одному устройству для каждого стационарного автоматического выключателя/каждой фиксированной части выкатного автоматического выключателя.

10.4 Блокировочная пластина для стационарного автоматического выключателя

	· · · · · · · · · · · · · · · · · · ·	
E1/6		38358
Примечание:	заказывайте только для стационарного автоматического выключателя.	

ABB SACE

Аксессуары SACE Emax

1SDA.....R1

Дополнительные блоки

Устройство автоматического ввода резерва ATS010 – (11)

E1/6	ATS010	52927

Тестовый блок PR010/T

E1/6 PR010/T 48964	
---------------------------	--

Сигнальный блок PR021/K

E1/6	PR021/K	59146
------	---------	-------

Сигнальный блок PR120/K

	_	70	-
н	#6	152	2
ж	×	а	ш
ч			п

E1/6	PR120/K (4 выхода с независимыми выводами)	58255
E1/6	PR120/K (4 выхода + 1 вход с общей клеммой)	58256

Блок измерений PR120/V

E1/6 PR120/V 58252

Примечание: если входной сигнал для измерения напряжения необходимо снять с клеммника/скользящих контактов или верхних выводов, а не за счет внутреннего подключения к нижним выводам, то см. также дополнительные коды стр. 9/54

Диалоговый блок PR120/D-M (Modbus RTU)

E1/6 PR120/D-M 58254

Беспроводный диалоговый блок PR120/D-BT

E1/6 PR120/D-BT 58257

Внешний блок беспроводной связи ВТ030

E1/6	BT030	58259

Блок ABB Fieldbus - plug EP010

	1 1014540	p.ag =: 0:0	
E1/6	EP010	60198	

9/60 ABB SACE

1SDA.....R1

Коды заказа

Микропроцессорные расцепители и модули номинального тока (отдельная поставка)

		FAVA	PAYA :
	PR121/P	PR122/P	PR123/P
	1SDAR1	1SDAR1	1SDAR1
:			
LI	58189	58196	
LSI	58193	58197	58199

Микропроцессорные расцепители

LI	58189	58196		
LSI	58193	58197	58199	
LSIG	58195	58198	58200	
LSIRc		58201		

Модуль номинального

тока

O		
E1-E3	In=400A	58192
E1-E3	In=630A	58221
E1-E6	In=800A	58222
E1-E6	In=1000A	58223
E1-E6	In=1250A	58225
E1-E6	In=1600A	58226
E2-E6	In=2000A	58227
E3-E6	In=2500A	58228
E3-E6	In=3200A	58230
E4-E6	In=4000A	58232
E6	In=5000A	58233
E6	In=6300A	58234

ABB SACE **9**/61

Примеры составления заказа

1) Дополнительные коды

Инструкции по составлению заказа

Стандартные варианты исполнения автоматических выключателей серии Emax идентифицируются при коммерческих кодов, которые можно изменить за счет добавления к ним следующих дополнительных кодов:

- коды комплектов для преобразования стационарных автоматических выключателей (отличных от выключателей с горизонтальными выводами для подключения сзади);
- дополнительные коды модулей тока (для значений тока ниже номинального);
- дополнительные коды для специальных вариантов исполнения выключателей с номинальным рабочим напряжением до 1150 В АС.

Указанные выше варианты также можно указать одновременно вместе с заказом одного и того же автоматического выключателя. "Дополнительные коды" указывают такие варианты исполнения, которые не являются дополнительными к основным кодам автоматических выключателей, а используются вместо них.

По этой причине данные коды нельзя применять качестве отдельной поставки.

Коды, которыми необходимо пользоваться при заказе расцепителей и модулей номинального тока как запасных частей, предназначенных для замены, приведены в разделе "Расцепители защиты и модули номинального тока, поставляемые отдельно".

Примеры

 Коды комплектов для преобразования стационарных автоматических выключателей (отличных от выключателей с горизонтальными выводами для подключения сзади)

Данные коды указывают на комплект, состоящий из 3 или 4 штук (для установки на верхние или нижние выводы). Для выполнения полного преобразования автоматического выключателя в заказе указывайте два идентичных комплекта или же два различных комплекта, если необходимо установить выводы смешанного типа. В случае выводов смешанного типа первый код указывает на трех- или четырехполюсный комплект, подлежащий установки сверху, а второй – на трех- или четырехполюсный комплект, подлежащий установки снизу.

Пример №1

Трехполюсный о выводами (VR)	стационарный автоматический выключатель Emax E3N с задними вертикальными
1SDA056148R1	E3N 3200 PR122/P-LSI-In=3200A 3p F HR
1SDA038054R1	KIT 1/2 3p F HR>F VR E3
1SDA038054R1	KIT 1/2 3p F HR>F VR E3

Пример №2

	тационарный автоматический выключатель Emax E3N с задними вертикальными у (VR) и выводами (F) снизу
1SDA056148R1	E3N 3200 PR122/P-LSI-In=3200A 3p F HR
1SDA038054R1	KIT 1/2 3p F HR>F VR E3
1SDA038064R1	KIT 1/2 3p F HR>F F E3

 Дополнительные коды модулей тока (для значений тока ниже номинального)

Пример №3

Трехполюсный	автоматический выключатель Emax E3N 3200 In=2000A
1SDA056148R1	E3N 3200 PR122/P-LSI-In=3200A 3p F HR
1SDA058242R1	Модуль номинального тока In=2000A E2-4IEC E3-4UL EX.C

 Дополнительные коды для специальных вариантов исполнения выключателей с номинальным рабочим напряжением до 1150 В АС

Пример №4

Трехполюсный стационарный автоматический выключатель Emax E3H/E 2000 (вариант исполнения на напряжение до 1150 В АС)		
1SDA056432R1	E3H 2000 PR121/P-LI-In=2000A 3p F HR	
1SDA048534R1	Специальный вариант исполнения Emax E3H/E20 на напряжение до 1150 В АС	

9/62 ABB SACE

9

2) Механические

блокировки

Инструкции по составлению заказа

Все механические блокировки, используемые для всех типов автоматических выключателей SACE Emax, состоят из различных частей, каждая из которых имеет свой собственный код, что обеспечивает высокую степень гибкости при составлении заказа дополнительного оборудования.

Описание составных частей приведено ниже:

• Тросики (см. 10.1 стр. 9/59)

Заказывается один комплект для одного типа блокировки.

Гибкие тросики крепятся к стационарному автоматическому выключателю и конструкциям оборудования при помощи самоклеющихся пластин и хомутов.

• Блокировка для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя (см. 10.2 стр. 9/59)

Данное устройство устанавливается на подвижную часть выкатного автоматического выключателя или на стационарный автоматический выключатель. Заказывайте по одному устройству для каждого стационарного автоматического выключателя/каждой подвижной части выкатного автоматического выключателя.

• Блокировка для стационарного автоматического выключателя/фиксированной части выкатного автоматического выключателя (см. 10.3 стр. 9/59)

Данное устройство устанавливается на фиксированную часть выкатного автоматического выключателя или на пластину взаимной блокировки стационарного автоматического выключателя (которая имитирует фиксированную часть выкатного автоматического выключателя).

Заказывайте данное устройство для каждого стационарного автоматического выключателя/каждой фиксированной части выкатного автоматического выключателя.

 Блокировочная пластина для стационарного автоматического выключателя (см. 10.4 стр. 9/59)

Заказывается для каждого стационарного автоматического выключателя, входящего в комплект.

Для каждого автоматического выключателя, используемого в блокировке, необходимо заказывать дополнительное оборудование, указанное ниже на рисунках, в соответствии с типом автоматического выключателя (см. стр. 9/59).

Тросики для блокировки 10.1 указаны один раз для всего комплекта.

1. Блокировка между двумя стационарными автоматическими выключателями

10.1	
10.2	
10.3	
10.4	

3. Блокировка между тремя стационарными автоматическими выключателями

abiomainiaecknimin bbikjiloaaiejinimin		
10.1		
10.2	10.2	10.2
10.3	10.3	10.3
10.4	10.4	10.4

2. Блокировка между двумя выкатными автоматическими выключателями

4. Блокировка между тремя выкатными автоматическими выключателями

автог	via	гич	ес
FP	- 1	_ 10.1 10.3	7
MP	「 , 	_ 10.2	٦ ا
	L	_	_

	г	_	٦
FP	Ι,	10.3	1
	L	-	_
	г	_ 10.2	٦
MP	1	10.2	1
	L	_	٦

Примеры составления заказа

Примеры

Пример №5

Необходимо выполнить блокировку типа A между двумя автоматическими выключателями. В частности, необходимо сблокировать следующие исполнения:

- трехполюсный стационарный автоматический выключатель SACE E3
- четырехполюсный выкатной автоматический выключатель SACE E4;
 расположенные горизонтально в распределительном щите.

При заказе следует использовать коды, приведенные ниже:

Поз.	Код	Описание	
100	Стационарный автоматический выключатель SACE E3		
	1SDA038329R1	Тросики горизонтальной взаимной блокировки типа А Е1/6	
	1SDA038367R1	Блокировка для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя E3	
	1SDA038364R1	Блокировка для стационарного автоматического выключателя/фиксированной части выкатного автоматического выключателя – тип А / В / D; E1/6	
	1SDA038358R1	Пластина блокировки для стационарного автоматического выключателя Е 1/6	
200 Подвижная часть выкатного		ъ выкатного автоматического выключателя SACE E4	
	1SDA043466R1	Блокировка для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя 4р E4 / 3р E6	
300	Фиксированная	часть SACE E4	
	1SDA038364R1	Блокировка для стационарного автоматического выключателя/фиксированной части выкатного автоматического выключателя – тип А / В / D; E1/6	

Пример № 6

Необходимо выполнить блокировку типа С между тремя вертикальными автоматическими выключателями следующих исполнений:

- трехполюсный выкатной автоматический выключатель SACE E2
- трехполюсный стационарный автоматический выключатель SACE E3
- четырехполюсный стационарный автоматический выключатель SACE E6

Поз.	Код	Описание	
100	Подвижная часть выкатного автоматического выключателя SACE E2		
	1SDA038366R1	Блокировка для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя E1-E2	
200	Фиксированная	часть SACE E2	
	1SDA038335R1	Тросики вертикальной взаимной блокировки типа С. Е1/6	
	1SDA038365R1	Блокировка для стационарного автоматического выключателя/фиксированной части выкатного автоматического выключателя Тип C, E1/6	
300	Стационарный автоматический выключатель SACE E3		
	1SDA038367R1	Блокировка для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя, E3	
	1SDA038365R1	Блокировка для стационарного автоматического выключателя/фиксированной части выкатного автоматического выключателя Тип C, E1/6	
	1SDA038358R1	Пластина блокировки для стационарного автоматического выключателя Е1/6	
400	Стационарный автоматический выключатель SACE E6		
	1SDA038369R1	Блокировка для стационарного автоматического выключателя/подвижной части выкатного автоматического выключателя, 4р E6	
	1SDA038365R1	Блокировка для стационарного автоматического выключателя/фиксированной части выкатного автоматического выключателя Тип C, E1/6	
	1SDA038358R1	Пластина блокировки для стационарного автоматического выключателя Е1/6	

9/64 ABB SACE